
Received: 30 December 2017 Revised: 12 April 2018 Accepted: 26 April 2018 Published on: 12 November 2018

DOI: 10.1002/qj.3332

R E S E A R C H A R T I C L E

The generation of kinetic energy in tropical cyclones revisited

Roger K. Smith1 Michael T. Montgomery2 Gerard Kilroy1

1Meteorological Institute, Ludwig Maximilian

University of Munich, Munich, Germany
2Department of Meteorology, Naval Postgraduate

School, Monterey, California

Correspondence
Roger K. Smith, Meteorological Institute,

Ludwig-Maximilians University of Munich,

Theresienstr. 37, 80333 Munich, Germany.

Email: roger.smith@lmu.de

Many previous diagnoses of the global kinetic energy budget for a tropical cyclone

have given prominence to the global integral of a pressure–work term in the gen-

eration of kinetic energy. However, in his erudite textbook Atmosphere–Ocean
Dynamics, Adrian Gill derives a form of the kinetic energy equation in which there

is no such explicit source term. In this article we revisit the interpretations of the

generation of kinetic energy given previously in light of Gill’s analysis and compare

the various interpretations, which are non-unique. Further, although global energet-

ics provide a constraint on the flow evolution, in the context of the kinetic energy

equation they conceal important aspects of energy generation and consumption, a

finding which highlights the limitations of a global kinetic energy budget in revealing

the underlying dynamics of tropical cyclones.
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1 INTRODUCTION

In a classic review paper, Anthes (1974, sect. DI) summarizes

the global energetics of tropical cyclones, based in part on

the work of Palmén and Jordan (1955) and Palmén and Riehl

(1957). In this review he argues that the kinetic energy is dom-

inated by the horizontal velocity components and he derives

an expression for the rate of generation of kinetic energy,

showing that “the important source of kinetic energy produc-

tion in the hurricane is the radial flow toward lower pressure

in the inflow layer, represented by u𝜕p∕𝜕r.” (Here u is the

radial velocity component, r is the radius and p is the pres-

sure). In a similar vein, Palmén and Riehl (1957) note that “the

generation depends on the vertical correlation between radial

flow component and pressure gradient which, for production

of kinetic energy, must be positive, i.e., the strongest inflow

must occur at the strongest inward directed pressure gradi-

ent.” They conclude that “kinetic energy production within

the cyclone can take place only if the cyclone is of the warm

core type.” Anthes goes on to argue that “this inflow is a

result of surface friction, which reduces the tangential wind

speed and thereby destroys the gradient balance, so that the

inward pressure gradient force exceeds the Coriolis and cen-

tripetal forces. In the warm core low the maximum pressure

gradient (𝜕p∕𝜕r < 0)1 occurs just above the surface layer, at

which the inflow (u < 0) is maximum in magnitude. In the

outflow layer, where the radial flow is reversed, the pressure

gradient is much weaker. The result is a net production of

kinetic energy, dominated by the contribution from the inflow

region.”

The foregoing interpretations seem at odds with the kinetic

energy equation in flux form presented by Gill (1982) in

which the term −u𝜕p∕𝜕r does not appear. Nevertheless, in

the context of tropical cyclones, subsequent work has built

on the formulation by Palmén and Riehl as reviewed by

Anthes (e.g., Kurihara, 1975; Tuleya and Kurihara, 1975;

Frank, 1977; DiMego and Bosart, 1982; Hogsett and Zhang,

2009; Wang et al., 2016). The generation of kinetic energy in

the context of the global climate is discussed by Peixoto and

Oort (1992, sect. 13.2).

The purpose of this article is to reconcile the different inter-

pretations of kinetic energy generation and to calculate the

various terms in the kinetic energy budget from an idealized

high-resolution numerical simulation of a tropical cyclone.

1Presumably Anthes meant 𝜕p∕𝜕r > 0.

Q J R Meteorol Soc. 2018;144:2481–2490. wileyonlinelibrary.com/journal/qj © 2018 Royal Meteorological Society 2481

https://orcid.org/0000-0002-3668-1608
https://orcid.org/0000-0001-5383-4648


2482 SMITH ET AL

2 KINETIC ENERGY EQUATIONS

In its most basic form, the momentum equation may be

written as

𝜕u
𝜕t

+ u ⋅ 𝛻u + f ∧ u = −1

𝜌
𝛻p − gk − F, (1)

where u is the three-dimensional velocity vector, p is the pres-

sure, 𝜌 is the density, F is the frictional force per unit mass

opposing the motion, f = f k, f is the Coriolis parameter

(2Ω sin𝜙, where 𝜙 is latitude and Ω is the Earth’s rota-

tion rate), g is the acceleration due to gravity and k is the

unit vector in the vertical direction (here and below, all vec-

tor quantities are in bold type). For simplicity, an f -plane is

assumed (f = constant) and the Coriolis terms proportional

to the cosine of the latitude have been neglected as is cus-

tomary for geophysical flow analyses off the Equator (e.g.,

McWilliams, 2011).

The kinetic energy equation is obtained by taking the scalar

product of Equation 1 with u using the identity u ⋅ 𝛻u =
𝛻( 1

2
u2) +𝝎∧ u, where 𝝎 = 𝛻 ∧ u is the vorticity vector. This

procedure gives

𝜕

𝜕t
( 1

2
u2) + u ⋅ 𝛻( 1

2
u2) = −1

𝜌
u ⋅ 𝛻p − gw − u ⋅ F, (2)

where w = k ⋅ u is the vertical component of velocity. Note

that the Coriolis force (−f ∧ u) does not appear in the energy

equation because it is orthogonal to u.

An alternative form of the kinetic energy equation is

obtained by removing some hydrostatically balanced refer-

ence pressure, pref (z), from Equation 1, where dpref∕dz =
−g𝜌ref defines a reference density, 𝜌ref , that is a function of

altitude z. Then, with the substitution p = pref (z) + p′ and

𝜌 = 𝜌ref (z) + 𝜌′, where p′ and 𝜌′ are the perturbation pressure

and density, respectively, the first two terms on the right-hand

side of Equation 1, −(1∕𝜌)𝛻p− gk, become −(1∕𝜌)𝛻p′ + bk,

where b = −g(𝜌 − 𝜌ref )∕𝜌 is the buoyancy force of an air

parcel per unit mass. Then, Equation 2 becomes

𝜕

𝜕t
( 1

2
u2) + u ⋅ 𝛻( 1

2
u2) = −1

𝜌
uh ⋅ 𝛻hp′ + Pw − u ⋅ F, (3)

where uh is the horizontal velocity vector, 𝛻h is the horizontal

gradient operator and

P = −1

𝜌

𝜕p
𝜕z

− g = −1

𝜌

𝜕p′

𝜕z
+ b (4)

is the net vertical perturbation gradient force per unit mass.

Despite the explicit appearance of p′ in the first term on the

right-hand side of Equation 3, all the terms in this equation

are independent of the reference pressure pref (z), since, in

particular, uh ⋅ 𝛻hpref (z) = 0. For simplicity, we take pref (z)
and 𝜌ref (z) to be the ambient pressure and density, respec-

tively, assuming that these are in hydrostatic equilibrium.

Then p′ vanishes at large distances from the vortex axis.

We examine now the different forms of Equation 3 derived

by Anthes (1974), Gill (1982) and others, beginning with a

slight modification of Gill’s formulation.

2.1 Modified Gill formulation

In essence, Gill’s formulation of the kinetic energy equation

is as follows. Using the result that for any scalar field, 𝛾 ,

𝜌
D𝛾

Dt
= 𝜕

𝜕t
(𝜌𝛾) + 𝛻 ⋅ (𝜌𝛾u), (5)

where D∕Dt = 𝜕∕𝜕t + u ⋅ 𝛻 is the material derivative (see

Gill, 1982, eq. 4.3.6),2 the material form of Equation 3 times

𝜌 may be written in flux form as

𝜕

𝜕t
( 1

2
𝜌u2)+𝛻 ⋅FKE = p′𝛻h ⋅uh +𝜌Pw+

𝜕(p′w)
𝜕z

−𝜌u ⋅F, (6)

where
FKE = (p′ + 1

2
𝜌u2)u (7)

is the mechanical energy flux density vector (Gill, 1982, cf.

eq. 4.6.4).

The global kinetic energy budget can be obtained by inte-

grating Equation 6 over a cylindrical volume of space, V , of

radius R and height H centred on the storm and using the

boundary conditions that u = 0 at r = 0, and w = 0 at

z = 0 and z = H. Here, we use a cylindrical coordinate sys-

tem (r, 𝜆, z) centred on the vortex, where r is the radius, 𝜆 is

the azimuth and z is the height. We denote an average of the

quantity 𝜒 over the volume V by

[
𝜒
]
= 1

𝜋R2H

R

∫
0

rdr

2𝜋

∫
0

d𝜆

H

∫
0

𝜒dz.

Then Equation 6 becomes

MODIFIED GILL FORM

d
dt

[
1

2
𝜌u2

]
=
[
p′𝛻h ⋅ uh

]
+ [𝜌Pw] − FKEG − D, (8)

where

FKEG = 1

𝜋R2H

2𝜋

∫
0

d𝜆

H

∫
0

[
u(p′ + 1

2
𝜌u2)

]
r=R

dz (9)

is the flux of mechanical energy through the side boundary r =
R, and for a Newtonian fluid with constant dynamic viscosity

coefficient 𝜇,
D = [𝜇Φ𝜈], (10)

where, in cylindrical coordinates,

Φ𝜈 = 2

[(
𝜕u
𝜕r

)2

+
(

1

r
𝜕v
𝜕𝜆

+ u
r

)2

+
(
𝜕w
𝜕z

)2
]

+
[
r 𝜕

𝜕r

(v
r

)
+ 1

r
𝜕u
𝜕𝜆

]2

+
[

1

r
𝜕w
𝜕𝜆

+ 𝜕v
𝜕z

]2

+
[
𝜕u
𝜕z

+ 𝜕w
𝜕r

]2

− 2

3
(𝛻 ⋅ u)2 (11)

2If the density refers to that of a moist air parcel consisting of dry air, water

vapour and liquid water, the density is conserved only if the liquid water

component is suspended in the parcel. In the presence of precipitation, there

will be a small source or sink of density associated with the flux divergence

of falling precipitation. In what follows, we will ignore the effects of this

source/sink term in the kinetic energy budget.
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is the dissipation function.3 Here, v is the tangential wind

component.

Since 𝛻h ⋅ uh is the fractional change in the horizontal

area of an air parcel per unit time, the first term on the

right-hand side of Equation 8 is the cumulative effect of

the kinetic energy generated locally when an air parcel with

positive perturbation pressure expands in the horizontal, or

when one with a negative perturbation pressure contracts in

the horizontal. The second term on the right-hand side of

this equation represents the rate of kinetic energy production

by air rising in the presence of a positive net vertical per-

turbation pressure gradient force (P > 0) and air sinking

in the presence of a negative net vertical perturbation pres-

sure gradient force (P < 0). In Gill’s original formulation,

the net vertical perturbation pressure gradient force term in

Equation 8 is replaced by a buoyancy force, which by itself

is a non-unique force, and the second term on the right-hand

side is replaced by 𝛻 ⋅u, which is the fractional change in vol-

ume of an air parcel. Note that, in Gill’s formulation, there is

no term corresponding with u𝜕p∕𝜕r (or equivalently u𝜕p′∕𝜕r)

in Anthes’ formulation of the problem, which a number of

authors have argued is the key term in generating kinetic

energy.

2.2 Generalized Anthes formulation

As noted above, Anthes reasonably supposes that the vertical

velocity makes only a small contribution to the global kinetic

energy, and his derivation of the kinetic energy equation is

based on the horizontal momentum equations only and the

neglect of the contribution from
1

2
w2 in the kinetic energy.

Nevertheless, Anthes retains the vertical velocity component

in the advection term u ⋅ 𝛻u in Equation 1 and u ⋅ 𝛻( 1

2
u2) in

Equation 2. A slightly generalized form of Anthes’ equation

follows directly from 𝜌 times Equation 3, which in flux form

analogous to Equation 6 is

𝜕

𝜕t
( 1

2
𝜌u2) + 𝛻 ⋅ FKEA =

−uh ⋅ 𝛻hp′ + 𝜌Pw − 𝜌u ⋅ F, (12)

where

FKEA = ( 1

2
𝜌u2)u. (13)

Again integrating over the cylinder, Equation 12 becomes

3Equation 8 is, in essence, the kinetic energy equation for the

Reynolds-averaged flow in which the quantity 𝜇 is a turbulent eddy coun-

terpart. In this case, we are presuming that a K-theory closure is adequate

so that the Reynolds-averaged equations look essentially like the Newto-

nian fluid formulation. Further, in the mechanical energy flux through the

side boundary in Equation 9 we have neglected the eddy diffusive radial

flux of kinetic energy. Relative to the advective flux of kinetic energy,

the diffusive flux scales with the inverse Reynolds number of the flow,

which is always small compared to unity outside of the surface layer.

This conclusion is based on recently obtained estimates of the turbulent

eddy diffusivity observed in major hurricanes on the order of 50–100 m2/s

(Zhang et al., 2011)

GENERALIZED ANTHES FORM

d
dt

[
1

2
𝜌u2

]
= −

[
uh ⋅ 𝛻hp′

]
+[𝜌Pw]−FKEA −D, (14)

where

FKEA = 1

𝜋R2H

2𝜋

∫
0

d𝜆

H

∫
0

[
u( 1

2
𝜌u2)

]
r=R

dz. (15)

Equation 14 is a generalization of Anthes’ formulation to

include the three-dimensional wind vector in the definition

of kinetic energy and the rate of working of the net verti-

cal perturbation gradient force per unit volume, [𝜌Pw], which

is a non-hydrostatic effect. As in Anthes’ original form, the

pressure–work term, −
[
uh ⋅ 𝛻hp′

]
, appears explicitly in the

global form of the kinetic energy equation. For an axisymmet-

ric flow, this term is simply
[
−u𝜕p∕𝜕r

]
and, at first sight, one

might question its prominence as a source of kinetic energy,

since 𝜕p∕𝜕r is not the only radial force acting on fluid parcels

en route to the storm core. Above the frictional boundary

layer, the radial pressure gradient is closely balanced by the

sum of the centrifugal force and the radial component of the

Coriolis force. Moreover, this source term does not appear

in Gill’s formulation (cf. Equation 8), although it is replaced

by the term
[
p′𝛻h ⋅ uh

]
and the boundary flux terms are dif-

ferent. Even so, one should bear in mind that even in the

axisymmetric case,
[
−u𝜕p∕𝜕r

]
is generating not only a radial

contribution to the kinetic energy, but also an azimuthal con-
tribution through the action of the generalized Coriolis force

−(f + v∕r)u. The generation of this azimuthal contribution

is implicit in the kinetic energy equation as the generalized

Coriolis force does no work, but this force component does

convert radial momentum to tangential momentum.

3 KINETIC ENERGY BUDGET FOR AN
IDEALIZED SIMULATION

We examine now the generation terms in the two forms of the

kinetic energy equation for the case of an idealized tropical

cyclone simulation. We begin with a brief description of the

numerical model and go on to present the results.

3.1 The numerical model

The numerical model used for this study is Bryan’s

three-dimensional, non-hydrostatic cloud model (CM1), ver-

sion 16 (Bryan and Fritsch, 2002). The simulations relate

to the prototype problem for tropical cyclone intensification,

which considers the evolution of an initially axisymmetric,

cloud-free, warm-cored, baroclinic vortex in a quiescent envi-

ronment on an f -plane. The initial vortex is in thermal wind

balance. A latitude of 20◦N and a constant sea surface tem-

perature of 28 ◦C are assumed. The model configuration is
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more or less the same as described in sect. 2 of Črnivec et al.
(2016). The differences are that, following the work of Mapes

and Zuidema (1996), a more realistic time-scale for Newto-

nian relaxation to the temperature field (10 days) is applied

here instead of the previous default value in CM1 (12 hr). Fur-

ther, an open boundary condition is taken at lateral boundaries

instead of rigid walls and the Dunion moist tropical sounding

is used as the environmental sounding (Dunion, 2011).

The initial tangential wind speed has a maximum of 15 m/s

at the surface at a radius of 100 km. The tangential wind speed

decreases sinusoidally with height, becoming zero at a height

of 20 km. Above this height, up to 25 km, the tangential wind

is set to zero. The balanced pressure, density and temperature

fields consistent with this prescribed tangential wind distribu-

tion are obtained using the method described by Smith (2006).

The calculations are carried out for a period of 4 days with

data output every 15 min.

3.2 A few details of the simulation

Figure 1 summarizes the vortex evolution in the simulation.

Figure 1a shows the time series of the maximum azimuthally

averaged tangential wind speed, Vmax, and Figure 1b shows

the radius Rvmax at which Vmax occurs. Typically, Vmax is

located a few hundred metres above the surface, within a

shallow inflow layer. The evolution is broadly similar to that

described in Kilroy et al. (2016), who used a different numer-

ical model and a much coarser horizontal resolution (with

horizontal grid spacing of 5 km compared with the 1 km used

here). In brief, after a gestation period of about a day, during

which deep convection becomes established inside Rvmax, the

vortex undergoes a rapid intensification phase lasting about

36 hr, before reaching a quasi-steady state. Initially Rvmax is

located at a radius of 100 km, but contracts to a little over

20 km after about 2.25 days. The most rapid contraction

occurs during the rapid intensification phase as absolute angu-

lar momentum surfaces are drawn inwards quickly within and

above the boundary layer.

Figure 1c shows the outermost radius of gale-force winds,

Rgales, defined here as the radius of 17 m/s azimuthally aver-

aged tangential winds at a height of 1 km, which is approxi-

mately at the top of the frictional boundary layer. Shown also

is RgalesF, defined as the (outer) radius at which the total wind

speed at any grid point at a height of 10 m is 17 m/s. Both

quantities serve as a measure of the vortex size, RgalesF being

closest to the quantity used by forecasters,4 but Rgales being

the preferred measure from a theoretical viewpoint (Kilroy et
al., 2016). The evolution of storm size based on RgalesF is sim-

ilar to that based on Rgales, although Rgales always exceeds the

value of RgalesF. After 4 days, Rgales exceeds RgalesF by about

80 km.

4Based on the wind speed in a particular sector and not azimuthally averaged.
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FIGURE 1 (a) Time series of maximum azimuthally averaged tangential

wind speed (Vmax). Panel (b) shows the radius Rvmax at which the maximum

tangential wind speed occurs. Panel (c) shows the outermost radius of gale

force winds (17m/s): “BLtop” refers to the outermost radius at which the

azimuthally averaged tangential wind at a height of 1 km equals gale force

(Rgales) and “surface" refers to the outermost radius where the azimuthally

averaged total wind equals gale force at a nominal height of 10 m (RgalesF)

[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2 shows vertical cross-sections of the azimuthally

averaged, 3-hr time-averaged radial and tangential veloc-

ity components, the vertical velocity component and the

M-surfaces during the intensification phase of the vortex. The

time averages are centred on 36 hr during the period of rapid

intensification and at 60 hr near the end of this period. The

basic features of the flow are qualitatively similar at both

times, but all three velocity components strengthen over the

period, the M-surfaces move inwards in the lower troposphere

http://wileyonlinelibrary.com
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FIGURE 2 (a,c) Vertical cross-sections of the azimuthally averaged, 3-hr time-averaged tangential velocity component (blue contours) centred at 36 and

60 hr. Superimposed are contours and shading of the averaged vertical velocity. Contour intervals are as follows. Tangential velocity: blue contours every

5 m/s, with a thick black contour highlighting the 17 m/s contour. Vertical velocity: thin red contours every 0.05–0.2 m/s; thick red contours at intervals of

0.5 m/s; thin dashed red contours indicating subsidence at intervals of 0.02 m/s. (b,d) Vertical cross-sections of the azimuthally averaged, 3-hr time-averaged

radial velocity component, together with the averaged vertical velocity centred at the same times. Contour intervals are as follows. Radial velocity: thick blue

contours every 4 m/s (dashed negative); thin blue dashed contours every 0.5 m/s down to −3.5 m/s. Absolute angular momentum: black contours every

2 × 105 m2/s, with the 6 × 105 m2/s contour highlighted in yellow [Colour figure can be viewed at wileyonlinelibrary.com]

and outwards in the upper troposphere. The flow structure is

similar to that described in many previous studies (see, e.g.,

the recent review by Montgomery and Smith, 2017a and refer-

ences therein), with a layer of strong shallow inflow marking

the frictional boundary layer, a layer of weaker inflow in the

lower troposphere, a region of strong outflow in the upper

troposphere and a layer of enhanced inflow below the out-

flow. The maximum tangential wind speed occurs within, but

near the top of the frictional boundary layer.5 Much of the

ascent occurs in an annular region on the order of 50–60 km in

radius. The region inside this annulus shows mostly descent.

3.3 Kinetic energy evolution

Figure 3 shows time series of the domain-averaged kinetic

energy per unit volume,
[

1

2
𝜌u2

]
, for domain radii of 300

and 500 km and a domain height of 20 km. As anticipated

by Anthes (1974), this quantity is dominated by the horizon-

tal velocity components; in fact, the curves for
[

1

2
𝜌u2

]
and[

1

2
𝜌u2

h

]
essentially overlap. It follows that the contribution of

the vertical velocity to the global kinetic energy is negligible.

5At 60 hr, the tangential wind field exhibits a second local maximum in the

eyewall. This is a transient feature that is presumably associated with a cen-

trifugal wave near the base of the eyewall (e.g., Montgomery and Smith,

2017, p. 550) excited by an elevated pulse of boundary layer outflow shortly

before. This feature is not seen at 48 or 72 hr and its presence does not alter

the findings concerning the kinetic energy budget.
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FIGURE 3 Time series of the left-hand side of Equation 14,
[

1

2
𝜌u2

]
(curves labelled uvw) compared to

[
1

2
𝜌u2

h

]
(curves labelled uv) for

cylinders of 300 and 500 km. The curves for each cylinder size essentially

lie on top of each other so that only a single curve is evident. The curves for

the 500 km domain are labelled with a “5”. Units 10−3 W/m3 [Colour figure

can be viewed at wileyonlinelibrary.com]

Notable features of the curves for both domain sizes are the

slight decrease during the first 12 hr on account of surface

friction, followed by a rapid increase as the vortex intensifies.

As time proceeds, the rate of increase progressively declines.

3.4 Kinetic energy generation: Anthes’ formulation

Figure 4 shows time series of the principal terms in the

generalized Anthes formulation (the right-hand side of

Equation 14), excluding only the global dissipation term since

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Time series of the kinetic energy tendency terms on the right-hand side of Equation 14, the Anthes formulation, averaged over a cylinder of size

(a) 300 km and (b) 500 km. Units on the ordinate are 10−3 W/m3. The dissipation term is not shown. A1 stands for
[
−uh ⋅ 𝛻hp′

]
, FK for FKEA and PW for

[𝜌Pw]. A1+ and A1− stand for the contributions to A1 from regions where the argument −uh ⋅ 𝛻hp′ is positive and negative, respectively (Note that small

values of the generation terms arise because high values of kinetic energy generation are highly localized to the high wind region of the vortex and the

averaging volume is large.) [Colour figure can be viewed at wileyonlinelibrary.com]

the focus of the paper is on kinetic energy generation. For

both domain radii, 300 km (Figure 4a) and 500 km (Figure

4b), both the terms
[
−uh ⋅ 𝛻hp′

]
and [𝜌Pw] are positive,

but, perhaps surprisingly, the former term is not appre-

ciably larger than the latter, even beyond 2 days when the

differences are largest. The lateral boundary flux term FKEA
is virtually zero throughout the calculation. For the larger

domain size (R = 500 km), the temporal behaviour of the var-

ious terms is similar, but, as expected, the magnitudes of the

respective terms are appreciably smaller (Figure 4b), since

the largest contributions to the averages are from well inside

a 300 km radius (note the different scales on the ordinate in

Figure 4a,b).

The finding that the two terms
[
−uh ⋅ 𝛻hp′

]
and [𝜌Pw] are

not appreciably different in magnitude is at first surprising

since, as shown in Figure 3, the contribution of the vertical

velocity to the total kinetic energy is negligible. Moreover,

the [𝜌Pw] term does not appear in Anthes’ original formu-

lation because the formulation was based on the horizontal

momentum equations only. An explanation of this result is

suggested by examination of the radius–height structure of the

azimuthally averaged generation term before completing the

columnar average, i.e. ⟨−uh ⋅ 𝛻hp′⟩, where the angle brack-

ets denote an azimuthal average. The structure of this average

together with those of the other generation term, ⟨𝜌Pw⟩, at

36 and 60 hr, is shown in Figure 5. At both times, the Anthes

generation term ⟨−uh ⋅𝛻hp′⟩ shows coherent regions of large

kinetic energy generation and large kinetic energy destruc-

tion. The main region of generation in Figure 5a,b is at low

levels, below about 2 km, where the strongest inflow occurs

and where the inward directed radial pressure gradient force

is particularly strong (Figure 5c,d). There is a second region

of generation in an annular column, mostly on the outer side

of the eyewall updraught below about 9 km at 36 hr and below

about 12 km at 60 hr. The generation terms in Figure 5a,b

are similar in structure and magnitude to those shown in fig.

42 (upper right) of Kurihara (1975), for a lower-resolution

axisymmetric simulation.

Since the radial pressure gradient is positive at all heights

(Figure 5c,d), these generation regions must be ones in which

there is generally inflow.6 For the same reason, where there

is outflow, there is kinetic energy removal as seen in the two

principal coherent regions in Figure 5a,b where ⟨−uh⋅𝛻hp′⟩ <
0. It follows that the computed value of

[
−uh ⋅ 𝛻hp′

]
is the

remainder resulting from the cancellation of two compara-

tively large contributions from ⟨uh ⋅ 𝛻hp′⟩ of opposite sign,

namely ⟨−uh ⋅𝛻hp′⟩+ and ⟨−uh ⋅𝛻hp′⟩−, the former being the

sum of all positive values of −uh ⋅𝛻hp′ and the latter being the

sum of all negative values. This large cancellation is evident

in the time series shown in Figure 4.

In summary, a substantial fraction of the kinetic energy that

is generated is removed in regions where there is outflow and

the residual is relatively small, which is indeed comparable to

the kinetic energy generated by the rate of working of the net

vertical perturbation pressure gradient force (buoyancy plus

perturbation pressure gradient), principally in the region of

diabatically forced ascent. The structure of the net vertical

perturbation pressure gradient force at 36 and 60 hr is shown

in Figure 5e,f. As expected, this force is concentrated in an

annular region overlapping the region of diabatic heating.

3.5 Kinetic energy generation: Gill’s formulation

Figures 6a,b show time series of the principal terms in the

modified Gill formulation (the right-hand side of Equation 8)

for cylinders of 300 km and 500 km radius, again exclud-

ing the global dissipation term. In this formulation, the term[
p′𝛻h ⋅ uh

]
is positive with mean amplitude and fluctuations

about this mean increasing with time during the 4 day cal-

culation. For the first day, the term is a little less than the

6Note that eddy effects are included in all generation terms.

http://wileyonlinelibrary.com
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FIGURE 5 Radius–height cross-sections of azimuthally averaged quantities in Equation 14 before performing the columnar average: ⟨−uh ⋅ 𝛻hp′⟩ (a,b) and⟨𝜌Pw⟩ (e,f), at 36 hr (left panels) and 60 hr (right panels). Similar cross-sections of ⟨𝜕p′∕𝜕r⟩ are shown in (c,d) for these times. Contour intervals are as

follows: (a,b,e,f) thick contours 5 × 10−2 W/m3; thin contours 1 × 10−2 W/m3; solid red contours positive; dashed blue contours negative; (c,d) thin contours

0.2 × 10−2 Pa/m to 0.8 × 10−2 Pa/m; medium thick contours 1.0 × 10−2 Pa/m to 5.0 × 10−2 Pa/m; thick contours every 5.0 × 10−2 Pa/m. Numbers indicated on

the sidebars should be multiplied by 10−2 [Colour figure can be viewed at wileyonlinelibrary.com]

[𝜌Pw] term, but thereafter becomes progressively larger. The

increasing energy source represented by the sum of the two

foregoing terms is opposed in part by the net outward flux of

mechanical energy through the radial boundary, FKEG.

Figure 6c,d shows the structure of the term ⟨p′𝛻h ⋅ uh⟩,
again at 36 and 60 hr. The radial and vertical integrals of

this term form the cylindrical average
[
p′𝛻h ⋅ uh

]
in the mod-

ified Gill formulation of the energy equation. The qualita-

tive radius–height structure of ⟨p′𝛻h ⋅ uh⟩ at the two times

shown is less easy to infer from the solutions in Figure 2.

Moreover, as shown in Figure 6, there is significant cancel-

lation between the term
[
p′𝛻h ⋅ uh

]
and the boundary flux

term in Gill’s formulation (Equation 8). For this reason,

Anthes’ formulation of the energy equation would seem to

be preferable to Gill’s formulation, even though both for-

mulations are correct and give the same tendency of kinetic

energy over the control volume of integration (see the next

subsection).

3.6 Total kinetic energy generation

A check on the foregoing calculations is provided by calculat-

ing the total tendency of kinetic energy generation, which is

the sum of all the terms on the right-hand side of Equations 8

or 14. This sum should be the same for each formulation.

That this is the case is verified in Figure 7, which shows the

sum for each domain size. As expected, the curves for the two

formulations are coincident.

http://wileyonlinelibrary.com
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FIGURE 6 Time series of the kinetic energy tendency terms:
[
p′𝛻h ⋅ uh

]
(denoted by G1); [𝜌Pw] (denoted by PW) and FKEG (denoted by FK) in the

modified Gill formulation (Equation 8 averaged over a cylinder of size (a) 300 km and (b) 500 km). Units on the ordinate are 10−3 W/m3. (c,d) The

azimuthally averaged terms ⟨p′𝛻h ⋅ uh⟩ in Equation 8 at 36 and 60 hr, respectively. Contour intervals are as follows: thick contours 5 × 10−2 W/m3; thin

contours 1 × 10−2 W/m3; solid red contours positive; dashed blue contours negative. Numbers indicated on the sidebars should be multiplied by 10−2 [Colour

figure can be viewed at wileyonlinelibrary.com]
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other [Colour figure can be viewed at wileyonlinelibrary.com]

4 DISCUSSION

Anthes’ statement noted in the introduction that “the impor-

tant source of kinetic energy production in the hurricane is the

radial flow toward lower pressure in the inflow layer, repre-

sented by −u𝜕p∕𝜕r” may seem problematic at first because,

above the boundary layer, the radial pressure gradient is very

closely in balance with the sum of the centrifugal and Cori-

olis forces. Thus the energy source associated with −u𝜕p∕𝜕r
might appear, at least at first, to be a gross overestimate.

However, the kinetic energy equation does not recognize the

balance constraint and, in this equation, the radial pressure

gradient acts to generate not only kinetic energy of radial

motion, but also that of tangential motion through the action

of the generalized Coriolis force (f+v∕r)u, a term that appears

in the tangential momentum equation in cylindrical coordi-

nates. This is despite the fact that the generalized Coriolis

force does not appear explicitly in the kinetic energy equation.

As noted also in the introduction, Anthes recognized that

much of the inflow into the storm is “a result of surface fric-

tion, which reduces the tangential wind speed and thereby

destroys the gradient balance, so that the inward pressure gra-

dient force exceeds the Coriolis and centripetal7 forces”; he

points out also that “in the warm core low the maximum

pressure gradient (−𝜕p∕𝜕r < 0 [sign corrected: our inser-

tion]) occurs at the lowest level, at which the inflow (u < 0)

is maximum. In the outflow layer, where the radial flow is

reversed, the pressure gradient is much weaker. The result is

a net production of kinetic energy, dominated by the contri-

bution from the inflow region.” While this view is broadly

7Presumably, Anthes means the centrifugal force.

http://wileyonlinelibrary.com
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supported by the calculations presented herein, the calcula-

tions provide a sharper view of the net production of kinetic

energy, indicating a region of significant kinetic energy gener-

ation accompanying inflow throughout the lower troposphere

above the boundary layer, as well as significant regions where

kinetic energy is consumed as air flows outwards, against

the radial pressure gradient force, above the boundary layer.

Indeed, the generation above the boundary layer is a mani-

festation of spin up by the classical mechanism articulated

by Ooyama (1969), while the generation within the boundary

layer, highlighted by Anthes, is a manifestation of the nonlin-

ear boundary layer spin up mechanism articulated by Smith

and Vogl (2008), Smith et al. (2009), Smith and Montgomery

(2016) and Montgomery and Smith (2017b).

Anthes argues that the boundary layer “must be responsible

for a net gain of kinetic energy” even though “a substantial

dissipation of kinetic energy in the hurricane occurs in the

boundary layer through turbulent diffusion and ultimate loss

of energy to the sea surface.” As a result, he is led to the

paradox that “surface friction is responsible for a net increase

in kinetic energy and without friction the hurricane could

not exist.” The resolution of this paradox would appear to be

Anthes’ de-emphasis of the role of the classical mechanism

for spin up in the kinetic energy budget.

The results of our study, especially the noted cancellation

of relatively large generation and consumption contributions

to the term
[
−uh ⋅ 𝛻hp′

]
, point to limitations in the utility of

a global kinetic energy budget in revealing the underlying

dynamics of tropical cyclone intensification. An alternative

approach would be to examine the energetics of individual air

parcels as they move around some hypothetical circuit (see

Emanuel (2004) and references therein), but this approach

relies on assumptions about the circuits traversed, which may

or may not be realizable in reality.

5 CONCLUSIONS

We have re-examined the traditional theory for kinetic energy

generation in a tropical cyclone used by Palmén and Jordan

(1955), Palmén and Riehl (1957), Frank (1977) and Hogsett

and Zhang (2009), and succinctly summarized in the review

article by Anthes (1974). We have compared this with an alter-

native interpretation of global kinetic energy generation in

geophysical flows inspired by Gill (1982), noting that such

interpretations are non-unique.

We have shown that the net rate of production of kinetic

energy is a comparatively small difference between the gen-

eration in regions of inflow and the magnitude of the con-

sumption in regions of outflow, so much so that this difference

is comparable in magnitude with the rate of generation by

the net vertical perturbation pressure gradient force. The lat-

ter effect was not contained in Anthes’ original formulation,

which was based only on the horizontal momentum equations.

We pointed out that the kinetic energy generation term in

Anthes’ formulation involving the radial pressure gradient

does not appear in Gill’s formulation of the kinetic energy

equation nor in our modification thereof. It is replaced by a

term comprising the global integral of the rate of working

by perturbation pressure (
[
p′𝛻h ⋅ uh

]
) as the flow expands in

the horizontal. However, this generation term is largely com-

pensated in the modified Gill formulation by the boundary

flux of mechanical energy (FKEG). The fact that the bound-

ary flux of kinetic energy in the Anthes formulation (FKEA)

is typically negligible, as well as the difficulty in anticipat-

ing the structure of the term
[
p′𝛻h ⋅ uh

]
in a tropical cyclone

are factors weighing in favour of using Anthes’ formulation

when applied to the generation of kinetic energy in a tropical

cyclone. However, in light of the large cancellation of posi-

tive and negative values in the radial pressure–work term, the

contribution from the rate of working of the net vertical force

is non-negligible in comparison and should be included in any

global kinetic energy budget.

While global energetics provide a constraint on flow evo-

lution, we have shown in the context of the kinetic energy

equation that they conceal important aspects of energy gener-

ation and consumption. This finding highlights the limitations

of a global kinetic energy budget in revealing the underlying

dynamics of tropical cyclones.
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APPENDIX: CALCULATION OF THE NET
VERTICAL FORCE, P

The net vertical force per unit mass, P, defined in Equation 4

and used to construct Figure 5e,f was first calculated on

the stretched model grid at the levels where thermodynamic

quantities are defined. The vertical perturbation pressure gra-

dient was determined by fitting a quadratic function to three

successive levels, zi−1, zi and zi+1, at which the perturbation

pressure has values p′
i−1

, p′
i and p′

i+1
, respectively. Then(

𝜕p′

𝜕z

)
i
=

(p′
i+1

− p′
i)dz2

i − (p′
i−1

− p′
i)dz2

i+1

dzi+1dzi(zi+1 − zi−1)
, (A1)

where dzi = zi − zi−1.
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