
Chapter 1

Fluid dynamics and moist
thermodynamics

In this chapter we review the equations that represent the physical laws governing
atmospheric motion. Rigorous derivations of the equations may be found in many
text books such as Holton and Gill.

1.1 The equations of motion

The motion of an air parcel is governed by Newton’s second law of motion, which
states that its acceleration equals the force per unit mass that acts upon it. In a
rotating frame of reference, the law is expressed mathematically as

Du

Dt
+ 2Ω ∧ u = −1

ρ
∇p + g + F, (1.1)

where u is the velocity of the air parcel, ρ is its density, p is the pressure, Ω is the
angular rotation vector of the reference frame (e.g. the Earth), F is the frictional force
acting on the parcel, t is the time, and g is the ”effective” gravitational acceleration.
The derivative D/Dt is calculated following the air parcel and has the form

Du

Dt
=
∂u

∂t
+ u · ∇u. (1.2)

The ”effective” gravitational acceleration is the vector sum of the acceleration due to
gravity alone and the acceleration associated with the centrifugal force arising from
the Earth’s rotation.

In the case of a fluid at rest, u = 0 and the momentum equation reduces to

∇p = ρg. (1.3)

This equation expresses hydrostatic equilibrium and is referred to as the hydrostatic
equation. When expressed in a rectangular or cylindrical coordinate system with z
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pointing upwards, g = (0, 0,−g) and Eq. (1.3) takes the more familiar form

dp

dz
= −ρg. (1.4)

Equation (1.4) is called the hydrostatic equation because it expresses a balance be-
tween the vertical pressure gradient and the gravitational force, both per unit volume,
a state that we call hydrostatic balance.

The motion of the air described by (1.1) is subject to the constraint that at every
point in the flow, mass must be conserved. In general, for a compressible fluid such
as air, mass conservation is expressed by the equation

Dρ

Dt
+ ρ∇ · u = 0. (1.5)

We call this the continuity equation.
In practice, density fluctuations in the air are rather small and can be neglected

unless we want to study sound propagation. Shallow layers of air on the order a
kilometre deep or less can be considered to be homogeneous (ρ = constant) to a first
approximation and therefore incompressible. In this case the continuity equation
reduces to

∇ · u = 0. (1.6)

This approximation is inaccurate for deeper layers since air is compressible under its
own weight. For example the density at a height of 10 km is only about a quarter
of that at mean sea level. Even so, for most purposes it is accurate to neglect the
time and horizontal variations of density. Then in (1.5) we may set ρ = ρo(z), where
ρo(z) is the mean density at a particular height z, whereupon (1.5) becomes

∇ · (ρou) = 0 (1.7)

This equation forms part of what is called the anelastic approximation in which
density is taken to vary only with height.

The constraint imposed by (1.6) or (1.7) means that the formulation of fluid flow
problems in enclosed regions is intrinsically different to that for problems in rigid
body dynamics. In the latter, a typical problem is to specify the forces acting on
a body and calculate its resulting acceleration. In many fluid flow problems, the
force field cannot be imposed arbitrarily: it must produce accelerations that are
compatible with ensuring mass continuity at all times. In general, this means that
the pressure field cannot be arbitrarily prescribed: it must be determined as part of
the solution. Thus methods for solving fluid flow problems are different also from
those those required for solving rigid-body problems (see section 1.6).

For homogeneous fluids, Eqs. (1.1) and (1.7) suffice to determine the flow when
suitable initial and boundary conditions are prescribed. However, when density
varies with pressure and temperature we need additional equations: a thermody-
namic equation and an equation of state. The latter is a relationship between the
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pressure, density and absolute temperature, T, of the parcel. For dry air it takes the
form

p = ρRdT, (1.8)

where Rd is the specific heat for dry air.

1.2 Thermodynamic equations

There are various forms of the thermodynamic equation, which is an expression of
the first law of thermodynamics. This law states that the amount of heat added to an
air parcel per unit mass, dq, equals the change in internal energy per unit mass, du,
plus the amount of work done by the parcel in expanding against its environment,
equal to the pressure times the change in specific volume, dα. The specific volume
is the volume per unit mass and is equal to the inverse of the density. For dry air,
du = cvddT , where cvd is the specific gas constant for dry air at constant volume.
Then the first law takes the form:

dq = cvddT + pdα (1.9)

Using the equation of state and the fact that α = 1/ρ this may be written as

dq = cpddT − RdT

p
dp, (1.10)

where cpd = cvd + Rd is the specific gas constant for dry air at constant pressure.
Equation (1.10) may be rewritten more succinctly as

d lnT − κd ln p =
1

cpdT
dq, (1.11)

where κ = Rd/cpd. When applied to a moving air parcel, Eq. (1.11) may be written
in the form

DT

Dt
− κ

T

p

Dp

Dt
=

1

cpd

Dq

Dt
. (1.12)

For dry air, Eqs. (1.1), (1.5), (1.8), (1.12) form a complete set to solve for the flow,
subject to suitable initial and boundary conditions.

Two alternative forms of (1.12) are frequently used. It is common to define the
potential temperature, θ, as T (p∗∗/p)κ, where p∗∗ is a reference pressure, normally
taken to be 1000 mb (or 1 hPa). Then (1.12) becomes

Dθ

Dt
=

1

cpdπ

Dq

Dt
. (1.13)

where π = (p∗∗/p)κ is called the Exner function. If there is no heat input into an
air parcel during its motion, the right-hand-side of (1.13) is zero, implying that θ
remains constant for the parcel in question. A process in which there is no external
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heat source or sink is called an adiabatic process. The potential temperature may
be interpreted as the temperature that an air parcel with temperature T at pressure
p would have if it were brought adiabatically to a standard reference pressure, p∗∗.
Diabatic processes are ones in which the heating rate following the parcel, Dq/Dt,
is non zero.

A second common form of (1.12) is

Ds

Dt
=

1

T

Dq

Dt
(1.14)

where s = cpd ln θ is known as the specific entropy of the air.
For motions that are in approximate hydrostatic balance, Eq. (1.4) tells us that

dp = −ρgdz, whereupon (1.9) becomes dq = cvddT + gdz. In this situation, an
alternative equation expressing the first law of thermodynamics is

Dhd

Dt
=
Dq

Dt
(1.15)

where hd = cpdT + gdz is known as the dry static energy of the air.

1.3 Prognostic and diagnostic equations

Equations of the type (1.1), (1.2) or (1.13) that involve time derivatives are called pre-
diction equations, because they can be integrated in time (perhaps not analytically)
to forecast subsequent values of the dependent variable in question. In contrast,
equations such as (1.3), (1.4), (1.6), (1.7), and (1.8) are called diagnostic equations,
because they give a relationship between the dependent variables at a particular
time, but involve time only explicitly.

1.4 Moist processes

Equations (1.12)-(1.12) hold to a good first approximation even when the air contains
moisture, in which case a dry adiabatic process is one in which the air remains
unsaturated. However, tropical cyclones owe their existence to moist processes and
the inclusion of these in any theory requires an extension of the foregoing equations
to allow for the latent heat that is released when water vapour condenses or liquid
water freezes and which is consumed when cloud water evaporates or ice melts. We
require also equation characterizing the amount of water substance in the air and its
partition between the possible states: water vapour, liquid water and ice.

Water content is frequently expressed by the mixing ratio, the mass of water per
unit mass of dry air. We denote the mixing ratios of water vapour, liquid water, ice
and total water by r, rL, ri and rT , respectively. Sometimes specific humidity, q, is
used rather than r. It is defined as the mass of water per unit mass of moist air and
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related to r by q = r/(1 + r). Since, in practice, r << 1, the difference between r
and q is not only small, but barely measurable.

The equation of state for air containing water vapour as well as hydrometeors
(liquid water drops, ice crystals) may be written as

p = ρRdTρ, (1.16)

where Tρ is a fictitious temperature, the density temperature, defined by

Tρ = T
1 + r/ε

1 + rT
, (1.17)

where ε = 0.622 is the ratio of the specific heat of dry air to that for water vapour
and rT is the mixing ratio of water substance (i.e. water vapour, liquid water and
ice). The use of Tρ in Eq. (1.16) of state is an artifice that enables us to retain the
specific heat for dry air in the equation. The alternative would be to use a specific
gas constant for the mixture of air and water substance that would depend on the
mixing ratios of these quantities (i.e. it would not be a constant!). In the special
case when there are no hydrometeors in the air, the density temperature reduces to
the virtual temperature, Tv, which may be written approximately as T (1 + 0.61r).

The extension of the thermodynamic equation to include water substance and
the equations for the various species of water substance will be delayed until later
chapters. Suffice it to say here that the introduction of various states of water requires
a modification of the equation to account for the latent heat released or consumed
during changes in phase of water substance. Additional equations governing the
rates-of-change of the mixing ratios for water vapour, liquid water and ice as well as
conversions between these states are required also.

1.5 Vorticity and the vorticity equation

Vorticity is defined as the curl of the velocity vector and we denote it by ω: i.e.
ω = ∇∧u. For a body of fluid rotating as a solid body, the vorticity vector is oriented
along the axis of rotation in a direction such that the rotation is counterclockwise
and it has a magnitude equal to twice the angular rotation rate. In general, vorticity
is a measure of the local rotation rate of a parcel of fluid. Not surprisingly, vorticity
is an important concept for characterizing rotating flows such as tropical cyclones
and other geophysical vortices including tornados, waterspouts and dust devils.

We may derive an equation for ω simply by taking the curl of the momentum
equation (1.1). The resulting equation, the Helmholtz vorticity equation, takes the
form

D

Dt
(ω + 2Ω) = (ω + 2Ω) · ∇u +

1

ρ2
∇ρ ∧∇p+ ∇ ∧ F. (1.18)

The quantity ω + 2Ω is called the absolute vorticity and is the sum of the relative
vorticity, ω, i.e. the curl of the velocity vector relative to a coordinate system rotating
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with angular velocity Ω, and the background vorticity, 2Ω, the vorticity associated
with the rotating coordinate system. The term on the left-hand-side is simply the
rate-of-change of vorticity following a fluid parcel. The terms (ω + 2Ω) · ∇u can be
interpreted as the rate-of-production of vorticity as a result of the stretching and
bending of absolute vorticity by velocity gradients. The term 1

ρ2∇ρ ∧∇p represents

the baroclinic generation of vorticity1 and the term ∇∧F is the frictional generation
term.

For a homogeneous fluid, or for so-called barotropic flows in which the pressure
is a function of density alone, the second term on the right-hand-side of (1.18) is
zero. In such cases the vorticity equation does not involve the pressure. This feature
has advantages for interpretation because, as noted in section 1.1, pressure cannot
be prescribed arbitrarily, but must be determined as part of the solution. Thus, in
these cases, interpretations in terms of vorticity circumvent the need to know about
the pressure field and are often easier to conceptualize than those based directly on
the momentum equation.

A class of flows in which we will have interest are homogeneous or barotropic,
frictionless and two-dimensional in planes perpendicular to the axis of rotation. In
such flows, the vorticity equation reduces to

D

Dt
(ω + 2Ω) = 0. (1.19)

Then the absolute vorticity of air parcels (or in this case air columns) is conserved
as these air parcels move around.

Another quantity that will prove useful in understanding certain types of flow is
the Ertel potential vorticity, P , defined as

P =
(ω + 2Ω) · ∇θ

ρ
. (1.20)

For the general adiabatic motion of a rotating stratified fluid, P is conserved for fluid
parcels, i.e.,

DP

Dt
= 0. (1.21)

When diabatic and/or frictional effects are present, P is no longer materially
conserved, but is governed by the equation

DP

Dt
=

1

ρ
(ω + 2Ω) · ∇θ̇ +

1

ρ
K · ∇θ =

1

ρ
∇ · Y, (1.22)

θ̇ is the diabatic heating rate given by the right-hand-side of (1.12), K represents the
curl of the frictional force F per unit mass (i.e. K = ∇∧ F) and

Y = −θ̇ (ω + 2Ω) + ∇θ ∧ F. (1.23)

1See Chapter 7 of my dynamics lectures.
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Equation (1.23) shows that diabatic heating in a localized region produces a dipole
anomaly of potential vorticity with its axis oriented along the absolute vorticity
vector (ω + 2Ω) and in the opposite direction to it (Fig. 1.1a). Cooling instead of
heating reverses the direction of the dipole (Fig. 1.1b).

Figure 1.1: PV dipole produced by localized diabatic heating (a), or cooling (b). (c)
shows the force-curl dipole associated with a localized force F.

The action of a localized force F produces positive relative vorticity to its left
and negative relative vorticity to its right (Fig. 1.1c), at a rate K equal to ∇ ∧ F.
Recalling that P = (1/ρ) (ω + 2Ω) · ∇θ and recalling that the frictional generation
term in (1.22) has the form (1/ρ)∇∧ F · ∇θ, we see how the latter contributes to a
change in and hence a change in (1/ρ) (ω + 2Ω) · ∇θ. Note that again, a localized
force produces a dipole anomaly of potential vorticity, being the projection of the
dipole anomaly of (ω + 2Ω), i.e. ∇∧ F, on the potential temperature gradient, ∇θ.

When integrated over a region of space V , Eq.(1.22) gives

d

dt

∫
V

ρPdV =

∫
S

(θ̇ (ω + 2Ω) + θF) · n̂dS, (1.24)

where S is the surface of V and n̂ is the unit normal to S, outward from V .
An important result that follows from (1.24) is that purely internal diabatic

heating or friction cannot change the mass-weighted potential vorticity distribution
within V , i.e., if θ̇ and K are zero on S, then

d

dt

∫
V

ρPdV = 0. (1.25)

Thus internal diabatic heating or friction can only redistribute the mass-weighted
potential vorticity that is there.
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1.6 Methods of solution

The momentum equations (1.1), the thermodynamic equation (1.12) or one of its
equivalent forms (Eqs. (1.13) or (1.14)), the equation of state (1.8), and the conti-
nuity equation (1.2) or one of the approximations to it (Eqs. (1.6) or (1.7)) form a
complete set for solving problems of dry air flow. For moist air flows, the equation
of state in the form (1.2) must be used and additional equations are necessary to
characterize the various species of water substance. The set of equations is referred
to as the primitive equations. The equations are rather general and admit a wide
range of solutions. If the density is allowed to vary with space and time, the gen-
eral solutions include motions associated with sound waves as well as range of wave
types. The solutions are greatly constrained by the boundaries of the flow domain.
For example, at an impervious boundary, there can be no component of flow normal
to the boundary. If the fluid is considered to be inviscid, there can be no stress along
the boundary and the flow adjacent to the boundary must be tangential to it. An
inviscid fluid is an idealization in which the internal viscosity is zero. Such a fluid
cannot support shearing stresses. If the fluid is viscous, there can be no flow at the
boundary, but gradients normal to the boundary of flow parallel to the boundary
may be large if the fluid viscosity is small. At a free surface, such as a water surface,
the pressure is often taken to be constant at the surface if surface tension effects can
be neglected.

As noted in section 1.1, the assumption that the fluid is incompressible or anelastic
and enclosed by impervious boundaries means that the pressure distribution cannot
be imposed arbitrarily, but must be determined as part of the solution. For this
reason, arguments for explaining flow behaviour on the basis of prescribed forces, as
in rigid body dynamics, are usually not possible. However in many flow situations,
other methods of solution are possible and some can provide powerful insights into
the flow behaviour. One such method, used widely in two-dimensional problems,
is the vorticity-streamfunction approach. This approach exploits the fact that one
can define a streamfunction that satisfies the continuity equation exactly and that
there is only one component of vorticity, that normal to the plane of flow, which may
be expressed in terms of the streamfunction. The simplest case is when the fluid is
homogeneous, then one has just one pair of equations to solve: a prediction equation
for the vorticity and a diagnostic equation for the streamfunction, neither of which
involves the pressure explicitly. This method will be exploited in Part II to gain an
understanding of tropical cyclone motion.

For flows in which the density varies, one needs a prediction equation for the ther-
modynamic equation as well. Moreover the vorticity equation involves the pressure.
However methods similar to the vorticity-streamfunction approach can be devised.
These methods are based on a prediction equation for the potential vorticity or some
approximation to it and on a diagnostic relationship between a streamfunction and
the potential vorticity. Examples are given in Chapters ... .
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1.7 Coordinate systems

The foregoing equations are formulated independent of a particular coordinate sys-
tem, but it is often convenient to use a rectangular coordinate system or cylindrical
coordinate system with one direction, usually the z-direction, being in the local ver-
tical direction at a particular latitude. Since tropical cyclones have a radial extent
that is small compared with the radius of the Earth, we can approximate the Earth
as locally flat. Common rectangular coordinate systems for tropical cyclones have
the x-axis pointing eastwards and y-axis pointing northwards, or use cylindrical co-
ordinates (r, λ, z) with r measuring radial distance from the coordinate axis and λ,
the azimuthal angle, measured anticlockwise from east. It is usually only the vertical
component of the Earth’s rotation that is of consequence (Do we need to show this
somewhere?) and it is customary to replace 2Ω by f , equal to 2|Ω| sinφk, where φ
is the latitude and k is a unit vector pointing locally upwards at the latitude of the
origin of the coordinates. The quantity f is called the Coriolis parameter. When f
is treated as a constant, we refer to such a coordinate system as an f -plane. In some
problems, the variation of f with latitude is important and it is often approximated
by a linear variation of f . We refer then to the coordinate system as a β-plane and
write f = fo + βy., where fo is the value of f at the origin of the coordinates, and
β = df/dy.

In some problems it is convenient to use a vertical coordinate other than height.
Common choices are: the pressure; the logarithm of the pressure; the pseudo-height
Z, which is a function of pressure that reduces to the actual height in an atmosphere
with a uniform potential temperature; the potential temperature; or σ, which is
defined either as the ratio of pressure to its surface value, or the pressure minus some
upper-level pressure divided by the surface value minus this upper-level pressure (see
Chapter 5). Since the potential temperature and dry entropy are uniquely related,
coordinates with θ in the vertical are called isentropic coordinates. In this case, for
example, the potential vorticity takes a particularly simple form:

P = −g(ζθ + f)(∂θ/∂p), (1.26)

Now the scalar product no longer appears. Moreover, when expressed in these coor-
dinates, the vertical advection in the derivative D/Dt is proportional to the heating
rate (see Eq. (1.13)). For adiabatic motion, when Dq/Dt = 0, (1.21) says that P is
conserved on isentropic surfaces. This turns out to be a very useful result and will
be exploited in various places in this book.

1.8 Buoyancy and perturbation pressure

It is common experience that air that is warmer than its surroundings rises and air
that is colder sinks. This tendency may be quantified in terms of the buoyancy force.
The buoyancy force that acts on an air parcel of volume V with density ρ in an
environment with density ρa is defined as the difference between the weight of air
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displaced by the parcel, ρagV , (the upward thrust according to Archimedes principle)
and the weight of the parcel itself ρaV . This quantity is normally expressed per unit
mass of the air parcel under consideration, i.e.

b = −g (ρ− ρa)

ρ
. (1.27)

The calculation of the upward thrust assumes that the pressure within the air parcel
is the same as that of its environment at the same level and that, ρa is the density
of the environment at the same height as the parcel. Using the equation of state
(1.8), the buoyancy force may be expressed alternatively in terms of temperature
(b = g(T − Ta)/Ta), where T is the parcel temperature and Ta is the temperature
of its environment. If the air contains moisture the virtual temperatures need to
be used instead. It follows that if an air parcel is warmer than its environment, it
experiences a positive (i.e. upward) buoyancy force and tends to rise; if it is cooler,
the buoyancy force is negative and the parcel tends to sink.

The tendency of warm air to rise is not immediately apparent from the vertical
component of forces on the right-hand-side of the momentum equation (1.1). How-
ever, we can modify this equation so that a buoyancy term appears. We simply
replace the pressure in this equation by the sum of a reference pressure pref , a func-
tion of height z only, and a perturbation pressure, p′ = p− pref . The former is taken
to be in hydrostatic balance with a prescribed reference density ρref , i.e. it satisfies
Eq. (1.4). In idealized flows, the reference density is sometimes taken as the density
profile in the environment, but in real situations, the environmental density is not
uniquely defined. In these cases, ρref (z) could be taken as the horizontally-averaged
density over some large domain surrounding the air parcel. Then Eq. (1.1) becomes

Du

Dt
+ 2Ω ∧ u = −1

ρ
∇p′ + b + F, (1.28)

where b = bk, where k is a unit vector in the local vertical direction.
A comparison of (1.1) and (1.28) shows that the sum of the vertical pressure

gradient and gravitational force per unit mass acting on an air parcel is equal to the
sum of the vertical gradient of perturbation pressure and the buoyancy force, where
the latter is calculated from Eq. (1.27) by comparing densities at constant height.
The expression for b in (1.28) has the same form as that in (1.27), but with ρref in
place of ρa. However, the derivation circumvents the need to assume that the local
(parcel) pressure equals the environmental pressure when calculating b. The pressure
deviation is accounted for by the presence of the perturbation pressure gradient, the
first term on the right-hand-side of (1.28).

The foregoing decomposition indicates that, in general, the buoyancy force is not
uniquely defined because it depends on the (arbitrary) choice of a reference density.
However, the sum of the buoyancy force and the vertical component of perturbation
pressure gradient per unit mass is unique. If the motion is hydrostatic, i.e. if
the vertical acceleration is small compared with the gravitational acceleration, the
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perturbation pressure gradient and the buoyancy force are equal and opposite, but
they remain non-unique.

We show in Chapter 3 that the definition of buoyancy force may need to be
modified for a rapidly-rotating vortex.

1.9 Turbulence, Diffusion and Friction

Most atmospheric flows are turbulent, especially in regions of large wind shear, or in
regions of vigorous buoyant convection. In such regions we attempt to predict the
mean motion, but in order to do this we may need to take account of the diffusive
properties of turbulent fluctuations. Sometimes this is done crudely by likening tur-
bulent diffusion to molecular diffusion, but with a much larger coefficient of diffusion.
Specifically we take F in Eq. (1.1) to be the vector K(∇2u,∇2v,∇2w), where K is
a so-called eddy diffusivity associated with the turbulent fluctuations. This analogy
is crude because unlike molecular diffusion, where the diffusivity is a property of
the fluid, K depends on the flow itself and treating it as a constant may be a poor
assumption.

(a) (b)

Figure 1.2: (a) An air parcel moving with speed ū(z) is displaced to a neighbouring
level δz, carrying its linear momentum with it. At level z+δz it appears as a negative
fluctuation, or at z − δz it appears as a positive fluctuation. In each case ρu′w′ < 0.
(b) The stress acting on an air layer of thickness δz is τ(z+ δz)− τ(z) per unit area.
The stress acting per unit volume is (τ(z + δz) − τ(z))/δz.

We illustrate the ideas for the case of a mean flow ū(z) that is one dimensional
in the x-direction (Fig. 1.2a). We assume that the total velocity at any height z is
(ū(z)+u′, v′, w′), where the prime quantities represent turbulent fluctuations that are
functions of space and time, but have zero mean. We assume also that dū/dz > 0.
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In analogy to molecular diffusion we consider an air parcel at height z moving with
the mean flow speed (i.e. u′ = 0). Suppose that on account of the component of
turbulent fluctuation w′, it moves to the neighbouring level z + δz, conserving its
linear momentum ρū. If w′ > 0, δz > 0 and at its new position the parcel will have
a momentum deficit ρu′ = ρ(ū(z) − ū(z + δz), whereas if w′ < 0, δz < 0 and it
will have a momentum surplus. In both cases the quantity ρu′w′ is negative and
corresponds to a transport of x-momentum in the negative z-direction, i.e. in the
opposite direction to the vertical gradient of ū. Thus on average the mean lateral
transport of momentum, ρu′w′, is negative and hence downgradient, meaning down
the gradient of ū. We define K such that

−ρu′w′ = K
dū

dz
. (1.29)

The quantity τ = −ρu′w′ represents a mean turbulent transport, or flux, of x-
momentum in the z-direction and is equivalent to a turbulent shear stress. A stress
has units of force per unit area.

The force in the x-direction acting on a layer of fluid of thickness δz is proportional
to the vertical gradient of the stress as indicated in Fig. 1.2b, i.e.

Fx =
dτ

dz
=

d

dz

(
K
dū

dz

)
. (1.30)

This expression is a special case of K(∇2u,∇2v,∇2w) when K is treated as a con-
stant.

Similar expressions are obtained for other conserved scalar quantities, c. Suppose
that c̄ has a mean gradient dc̄/dz, then turbulent fluctuations give rise to a mean
flux of c in the z-direction, Fc = −ρc′w′. If dc̄/dz > 0, then the flux is normally2 in
the negative z-direction and we can write

Fc = Kc
dc̄

dz
, (1.31)

where Kc is an eddy diffusivity for the quantity c. The rate of accumulation of c in
a unit volume is simply minus the divergence of this flux in the volume.

Note that waves are associated also with fluctuations about a mean and the
effects of waves on mean flows can be analysed in a similar way to those of turbulent
fluctuations. For example there may be a stress associated with wave motions ... .
Examples of this type will be discussed in Part II.

2Unlike molecular diffusion, it is possible for a turbulent flux to be countergradient, in which
case the eddy diffusivity would be negative.
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1.10 Exercises

Exercise 1.1 Show that for a two-dimensional flow u = (u, v, 0) in a rectangular
coordinate system (x, y, z) with the rotation vector ω = (0, 0,Ω), Eq. (1.19) reduces
to the scalar equation:

D

Dt
(ζ + 2Ω) = 0, (1.32)

where ζ = ∂v/∂x− ∂u/∂y.

Exercise 1.2 Consider the case of an axisymmetric vortex with tangential ve-
locity distribution v(r), and assume a linear frictional force F = −μv(r), μ(> 0)
acts at the ground z = 0. Then K = −μζk, where ζ is the vertical component
of relative vorticity. Then PV is destroyed locally at the boundary at the rate
(1/ρ)(K·∇θ) = −(1/ρ)μζ(∂θ/∂z)z=0. The frictional force-curl term may be expected
to be important in the boundary layer.

Exercise 1.3 Using the gas law, p = ρRdT , and the usual definition of virtual
potential temperature, show that the buoyancy force per unit mass can be written
as

b = g

[
(θ − θref)

θref
− (κ− 1)

p′

pref

]
, (1.33)

where θ is the virtual potential temperature of the air parcel in K and θref is the
corresponding reference value.

Note that the second term on the right-hand-side of (1.33) is sometimes referred
to as the “dynamic buoyancy”, but in some sense this is a misnomer since buoyancy
depends fundamentally on the density perturbation and this term simply corrects the
calculation of the density perturbation based on the virtual potential temperature
perturbation.

Exercise 1.4 Show that if the perturbation pressure gradient term in (1.28) is
written in terms of the Exner function and/or its perturbation, the second term in
(1.33) does not appear in the expression for buoyancy.

Exercise 1.5 The x-momentum equation for the two-dimensional flow of a ho-
mogeneous, inviscid fluid in the x-z plane may be written

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
, (1.34)

in standard notation. Assuming that the flow can be decomposed into a mean part
and a fluctuating part, show that the mean flow satisfies the equation

∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
= −1

ρ

∂p̄

∂x
− ∂

∂x
u′2 − ∂

∂z
u′w′, (1.35)
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where an overbar represents a mean quantity and a prime represents a fluctuation
about the mean.

1.11 Further reading for Chapter 1

Textbooks

J. R. Holton, An Introduction to Dynamic Meteorology. Academic Press. Fourth
Edition. 2004. 529pp.

J. M. Wallace and P. V. Hobbs. Atmospheric Science: An introductory survey.
Academic Press. Second Edition. 2006. 483pp.

C. F. Bohren and B. A. Albrecht. Atmospheric Thermodynamics. Oxford Uni-
versity Press. 1998. 402pp.

K. A. Emanuel. Atmospheric Convection. Oxford University Press. 1994. 580pp.

Research papers

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and
significance of potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 877-946.




