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Chapter 1

OBSERVATIONS OF TROPICAL
CYCLONES

Tropical cyclones are intense, cyclonically1-rotating, low-pressure weather systems
that form over the tropical oceans. Intense means that near surface sustained2 wind
speeds exceed 17 ms−1 (60 km h−1, 32 kn). Severe tropical cyclones with near
surface sustained wind speeds equal to or exceeding 33 ms−1 (120 km h−1, 64 kn) are
called hurricanes over the Atlantic Ocean, the East Pacific Ocean and the Caribbean
Sea, and Typhoons over the Western North Pacific Ocean. Typically the strongest
winds occur in a ring some tens of kilometres from the centre and there is a calm
region near the centre, the eye, where winds are light, but for moving storms, the
wind distribution may be asymmetric with the maximum winds in the forward right
quadrant. The eye is so-called because it is normally free of cloud, except perhaps
near the surface, but in a mature storm it is surrounded by a ring of deep convective
cloud that slopes outwards with height. This is the so-called eyewall cloud. At larger
radii from the centre, storms usually show spiral bands of convective cloud. Figure
1.1 shows a satellite view of the eye and eyewall of a mature typhoon, while Fig.
1.2 shows photographs looking out at the eyewall cloud from the eye during aircraft
reconnaissance flights.

1.1 Structure

The mature tropical cyclone consists of a horizontal quasi-symmetric circulation on
which is superposed a thermally-direct3 vertical (transverse) circulation. These are
sometimes referred to as the primary and secondary circulations, respectively, terms
which were coined by Ooyama (1982). The combination of these two component
circulations results in a spiralling motion. Figure 1.3 shows a schematic cross-section

1Cyclonic means counterclockwise (clockwise) in the northern (southern) hemisphere.
2The convention for the definition of sustained wind speed is a 10 min average value, except in

the United States, which adopts a 1 min average.
3Thermally direct means that warm air rising, a process that releases potential energy.
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CHAPTER 1. OBSERVATIONS OF TROPICAL CYCLONES 6

Figure 1.1: Infra-red satellite imagery of a typhoon.

of prominent cloud features in a mature cyclone including the eyewall clouds that
surround the largely cloud-free eye at the centre of the storm; the spiral bands of
deep convective outside the eyewall; and the cirrus canopy in the upper troposphere.
Other aspects of the storm structure are highlighted in Fig. 1.4. Air spirals into the
storm at low levels, with much of the inflow confined to a shallow boundary layer,
typically 500 m to 1 km deep, and it spirals out of the storm in the upper troposphere,
where the circulation outside a radius of a few hundred kilometres is anticyclonic.
The spiralling motions are often evident in cloud patterns seen in satellite imagery
and in radar reflectivity displays. The primary circulation is strongest at low levels
in the eyewall cloud region and decreases in intensity with both radius and height as
shown by the isotachs of mean tangential wind speed on the right-hand-side of the
axis in Fig. 1.4. Superimposed on these isotachs are the isotherms, which show the
warm core structure of the storm, with the largest temperatures in the eye. Outside
the eye, most of the temperature excess is confined to the upper troposphere.

On the left side of the axis in Fig. 1.4 are shown the isolines of equivalent
potential temperature, θe, referred to also as the moist isentropes. Note that there
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(a)

(b)

Figure 1.2: Aerial photographs of the eye wall looking out from the eyes of (a)
Hurricane Allen (1983), and (b) Typhoon Vera (19xx)

is a strong gradient of θe in the eyewall region and that the moist isentropes slope
radially outwards with height. This important feature, which we make use of in
discussing the dynamics of tropical cyclones in section 2.10, is exemplified also by
the θe-structure observed in Hurricane Inez (1966), shown in Fig. 1.5. Since θe is
approximately conserved in moist flow, even in the presence of condensation, the
pattern of the isentropes reflects the ascent of air parcels in the eyewall from the
boundary layer beneath to the upper-level outflow. The large inward radial gradient
of θe is a consequence of the rapid increase in the moisture flux from the ocean on
account of the rapid increase of wind speed with decreasing radius as the eyewall is
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approached.

Figure 1.3: Schematic cross-section of cloud features in a mature tropical cyclone.
Vertical scale greatly exaggerated. (From Gentry, 1973)

Figure 1.4: Radial cross-section through an idealized, axisymmetric hurricane. On
left: radial and vertical mass fluxes are indicated by arrows, equivalent potential
temperature (K) by dashed lines. On right: tangential wind speed in m s−1 is
indicated by solid lines and temperature in oC by dashed lines. (From Wallace and
Hobbs, 1977 and adapted from Palmén and Newton, 1969)

The ”classical” structure of a tropical cyclone core is exemplified by that of Hur-
ricane Gilbert at 2200 UTC on 13 September 1988. At this time Gilbert was an
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Figure 1.5: Vertical cross-sections of equivalent potential temperature (K) in Hurri-
cane Inez of 1964 (From Hawkins and Imbembo 1976)

intense hurricane with a maximum wind speed in excess of 80 m s−1 and it had the
lowest sea-level pressure ever measured (888 mb) in the Western Hemisphere. The
following description is adapted from that of Willoughby (1995). The storm was
especially well documented by data gathered from research aircraft penetrations.

1.1.1 Precipitation patterns, radar observations

A composite of radar reflectivity observed in Gilbert’s core from one of the research
aircraft is shown in Fig. 1.6. The eye is in the center of the picture, and is surrounded
by the eyewall with maximum radar reflectivities of 40-47 dBZ4. The reflectivity in
the eye is below the minimum detectable signal for the radar. During the flight,
visual observation showed the eye to be free of clouds at and above flight level with
blue sky visible overhead. Below flight level, broken stratocumulus in the lowest 1
km of the eye partially obscured the sea surface. In the radar image, the radius
from the centre of the eye to the inner edge of the eyewall is about 8 km. The outer
edge of the eyewall is less than 20 km from the center. Surrounding the eyewall
is a ”moat” where the reflectivities are less than 25 dBZ, which is equivalent to a
factor of more than 100 lower rainfall rates than in the eyewall. As the aircraft flew
across the moat at 3 km altitude, it was in rain beneath an overcast sky, and low
stratocumulus obscured the surface. Beyond the outer edge of the moat (75 km from

4The decibel, abbreviated dBZ is a measure of the intensity of the backscattered radar beam
and is related to the intensity of precipitation in the storm.
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Figure 1.6: (a) Plan-position indicator (PPI) radar reflectivity composite of Hurri-
cane Gilbert at about 2200 UTC on 13 September 1988, when it was at maximum
intensity near 19.9N, 83.5W. (b) Fight-level measurements from research aircraft.
The abscissa is distance along a north-south pass through the centre. The top panel
shows wind speed (dark solid line), 700 mb height (light solid line), and crossing
angle (tan−1 u/v, dash-dotted line). Winds are relative to the moving vortex centre.
The middle panel shows temperature (upper curve) and dewpoint. When TD > T ,
both are set to 1

2
(T + TD). The bottom panel shows vertical wind. (From Black and

Willoughby 1992)

the centre), the radar image shows precipitation organized into spirals that appear
to be coalescing into a second ring of convection around the inner eye. Whereas
the maximum reflectivities in the spirals are about 45 dBZ, which is a value com-
parable with that in the eyewall, reflectivities are ≤ 30 dBZ over much of the area
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outside the moat. Radar shows patterns of precipitation, but radar images contain
important clues for visualization of the flow also. Echo-free areas, such as the eye
and the moat, generally indicate vortex-scale descent. The highly reflective echoes
contain both convective updrafts and precipitation-induced downdrafts. The indi-
vidual echoes may be arranged in rings that encircle the centre, or in open spirals.
The lower reflectivities over most of the rings and spirals are stratiform rain falling
from overhanging anvil cloud; the higher reflectivities are embedded convective cells.
Based upon a typical radar reflectivity-rainfall relationship5 the rainfall rate is less
than 4 mm h−1 in the stratiform areas and greater than 45 mm h−1 in the strong
convective cells, which typically cover only a few percent of the hurricane as a whole.
Corresponding radial profiles of flight-level wind, 700 mb geopotential height, tem-
perature, and dewpoint observed by the aircraft are shown in Fig. 1.6b. These are
discussed below.

1.1.2 Wind structure

The strongest horizontal wind (> 80 m s−1 ) is in the eyewall, only 12 km from the
calm at the axis of rotation. This is typical of a tropical cyclone, although in weaker
storms the radius maximum wind speed is larger, ranging up to 50 km or more.
Outside the eyewall, the wind drops abruptly to about 30 m s−1 at the outer edge of
the moat and then rises to 35 m s−1 in the partial band of convection surrounding the
moat. The cross-flow angle (tan−1 u/v, where u and v are the radial and tangential
wind components) at 700 mb is < 10o. There is a tendency for radial flow toward
the wind maxima from both the inside and the outside, which indicates that the
horizontal wind converges into these features, even in the mid-troposphere. Not
surprisingly, convective-scale vertical motions (updrafts), or on the south side of the
eyewall in this case, downdrafts, often lie where the inflows and outflows converge
just a kilometer or two radially outward from the horizontal wind maxima. The
strongest vertical motions, even in this extremely intense hurricane, are only 5-10 m
s−1. There is a statistical tendency for the downdrafts to lie radially outward from
the updrafts, as occurs, for example, 80 km south of Gilbert’s centre.

1.1.3 Thermodynamic structure

The air temperature shows a steady rise as the aircraft flies inwards towards the
eyewall and then a rapid rise as it enters the eye. Thus the warmest temperatures
are found in the eye itself, not in the eyewall clouds where the latent heat occurs.
These warm temperatures must arise, therefore, from subsidence in the eye. The
dynamics of the eye and the reasons for this subsidence are discussed in section 2.7.

At most radii in Fig. 1.6b, the dewpoint depression6 is on the order of 4oC.

5Z = 300R1.35, where Z is the reflectivity (in mm6 m−3) and R is the rainfall rate (mm h−1);
see Jorgensen and Willis 1982

6The difference between the temperature and the dewpoint temperature
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Figure 1.7: A dropsonde observation in the eye of Hurricane Hugo, near 14.7oN
54.8oW at 1838 UTC September 1989. Temperature is the right hand curve and
dewpoint is the left. Nearly vertical curving lines are moist adiabats. Lines sloping
up to the left are dry adiabats; those sloping up to the right are isotherms; and
horizontal lines are isobars (From Willoughby 1995).

The air is saturated only where convective vertical motions pass through flight level.
Inside the eye, the temperature is greater than 28oC and the dewpoint is less than
0oC. These warm and dry conditions are typical of the eyes of extremely intense
tropical cyclones. A sounding in the eye of Hurricane Hugo on 15 September 1989,
when its structure was much like Gilbert’s even though its central pressure was 34 mb
higher, is shown in Fig. 1.7. An inversion at 700 mb separates air with a dewpoint
depression of about 20oC from saturated air that follows a moist adiabat down to
the sea surface. Above the inversion, the air detrains from the eyewall near the
tropopause and flows downward as part of a thermally indirect, forced subsidence in
the eye. It is moistened a little by entrainment from the eyewall and evaporation of
virga. Below the inversion, the air is cooler and nearly saturated as a result of inflow
under the eyewall, inward mixing, and evaporation from the sea inside the eye.

1.1.4 Vertical cross-sections

Research aircraft transects in Hurricane Hilda 1964 were obtained at five different
levels enabling the vertical structure of the storm to be documented. Cross-sections
of azimuthal wind and temperature anomaly are shown in Fig. 1.8. Again, as is
typical, the primary circulation in Hurricane Hilda (Fig. 1.8a) is strongest just
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above the frictional boundary layer. Below 500 mb, it has little vertical shear, but in
the upper troposphere, it becomes weaker and less symmetric, and the radial outflow
is a large fraction of the swirling motion. Near the tropopause beyond 200 km radius,
the vortex turns anticyclonic because of angular momentum loss to the sea on the
inflow leg of the secondary circulation (Riehl 1963).

Figure 1.8: Vertical cross-sections of (a) azimuthal wind (kt), and (b) temperature
anomaly (K) in Hurricane Hilda of 1964 (From Hawkins and Rubsam 1968)

Figure 1.9 illustrates a schematic secondary circulation in a tropical cyclone such
as Gilbert. This circulation is forced by an intense frictional destruction of angular
momentum at the surface (section 2.8), by strong latent heat release in the inner
eyewall clouds (section 2.5), weaker heating in the outer eyewall clouds, and extensive
but weak cooling caused by frozen precipitation melting along the radar bright band7,
and similarly extensive and weak heating due to condensation and freezing in the
anvil above the bright band.

The low-level inflow in the heating-induced thermally direct gyres in Fig. 1.9 is
distinct from the frictional inflow - see Fig. 1.10 below. The swirling wind in the
friction layer is generally a little weaker than that just above. Thus, only the heating-
induced inflow can supply an excess of angular momentum beyond that required to
balance frictional loss. Observations show that the eyewall updrafts slope outward
along constant angular momentum surfaces (Jorgensen 1984a,b; Marks and Houze
1987). The updraft slope from the vertical is the ratio of the vertical shear to the
vertical component of the vorticity (Palmén 1956) and has typical values of 30o-60o

7The bright band is a layer seen in vertical radar scans through cloud and coincides with the
melting layer just below the 0oC isotherm. Melting ice particles have enhanced reflectivity.
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Figure 1.9: Schematic of the secondary circulation and precipitation distribution
for a tropical cyclone similar to Hurricane Gilbert at the time in Fig. 1.6. (From
Willoughby 1988)

(Black 1993), contrary to some claims that eyewalls are vertical (e.g. Shea and Gray
1973).

Outside the eye, latent heat release above the 0◦C isotherm drives mesoscale
updrafts. Below the 0◦C isotherm, condensate loading and cooling due to melting of
frozen hydrometeors drive mesoscale downdrafts. The mesoscale vertical velocities
are typically tens of centimeters per second.

The secondary circulation controls the distribution of hydrometeors and radar
reflectivity. Ascent is concentrated in convective updraft cores, which typically cover
10% of the area in the vortex core and more than half of the eyewall. The vertical
velocity in the strongest 10% of the updraft cores averages 3-5 m s−1. Except for
”supercell storms”8 sometimes observed in tropical storms (Gentry et al. 1970; Black
1983), convective cells with updrafts > 20 m s−1 appear to be rare. Much of the
condensate falls out of the outwardly sloping updrafts, so that the rain shafts are
outside and below the region of ascent. The eyewall accounts for 25%-50% of the
rainfall in the vortex core, but perhaps only 10% of the rainfall in the vortex as a
whole. In the rain shafts, precipitation loading and, to a lesser extent, evaporation
force convective downdrafts of a few meters per second. Any condensate that remains
in the updrafts is distributed horizontally in the upper troposphere by the outflow.
It forms the central dense overcast that usually covers the tropical cyclone’s core,
and much of it ultimately falls as snow to the melting level where it forms the radar
brightband. Nearly all the updrafts glaciate by -5◦C because of ice multiplication
and entrainment of frozen hydrometeors (Black and Hallett 1986).

8A supercell storm is one which has a single intense rotating updraft.
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Above the boundary layer, the secondary circulation and distributions of radar
reflectivity and hydrometeors are much like those in a tropical squall line (Houze
and Betts 1981). They have the same extensive anvil, mesoscale up- and downdrafts,
and brightband. The boundary layer flows and energy sources are, however, much
different. As a squall line propagates, it draws its energy from the water vapour
stored in the undisturbed boundary layer ahead of it, and leaves behind a cool wake
that is capped by warm, dry mesoscale downdraft air under the anvil. However, as
an eyewall propagates inward, but draws energy primarily from behind (outward)
rather than ahead (inward). Frictional inflow feeds the updraft with latent heat
extracted from the sea under the anvil. The reason for the difference between an
eyewall and a squall line is the increased rate of air-sea interaction in the strong
primary circulation of a tropical cyclone.

1.1.5 Composite data

Because of the difficulty and expense of gathering enough data for individual storms
to construct vertical cross-sections such as those in Figs. 1.5 and 1.8, composite data
sets have been constructed on the basis of data collected for very many similar storms
at many time periods. The technique was pioneered by W. Gray and collaborators
at the Colorado State University and is explained by Frank (1977). The idea is to
construct eight octants of 45◦ azimuthal extent and eight radial bands extending
from 0-1◦, 1-3◦, 3-5◦, 5-7◦, 9-11◦, 11-13◦ and 13-15◦. Data from individual soundings
are assigned to one of these subregions according to their distance and geographical
bearing relative to the storm centre. The data in these subregions are then averaged
to define a composite storm.

Vertical cross-sections of the mean radial and tangential wind components in
hurricanes, based on composite data from many storms are shown in Figs. 1.10.
Note that the radial wind component increases inwards with decreasing radius at
low levels, is inward but relatively small through the bulk of the troposphere and is
outward in the upper troposphere.

1.1.6 Strength, intensity and size

It is important to distinguish between the ”intensity” of the cyclone core and the
”strength” of the outer circulation. Intensity is conventionally measured in terms of
maximum wind or minimum sea-level pressure; strength is a spatially-averaged wind
speed over an annulus between 100 and 250 km from the cyclone centre. Another
useful parameter is size, which may be defined as the average radius of gale force
winds (≥17 m s−1), or of the outer closed isobar (ROCI). Observations show that size
and strength are strongly correlated, but neither is strongly correlated with intensity.

The climatology of size is well established for the Atlantic and North Pacific.
On average, typhoons are 1.5◦ lat. larger than Atlantic hurricanes. Small tropical
cyclones (ROCI < 2◦ lat.) are most frequent early in the season (August), and large
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Figure 1.10: (From Gray, 1979; Frank 1977)

ones (ROCI > 10◦ lat.) late in the season (October). Large tropical cyclones are
most common at 30◦N, which is the average latitude of recurvature.

The life cycle of an Atlantic tropical cyclone begins with a formative stage during
which the outer circulation contracts a little as the core intensifies. During the
immature stage, the intensity increases to a maximum as the size remains constant.
In the mature stage, the tropical cyclone grows, but no longer intensifies. In the
decaying stage, the inner core winds decrease as the circulation continues to grow.
The ROCI is typically 2.5◦ lat. in the immature stage and twice that value in the
decaying stage a week e maximum intensity, start of rapid growth, and recurvature9

of the track tend to coincide.
A detailed study of reconnaissance aircraft data from the western North Pacific

confirms the low correlation between strength and intensity, and essentially no cor-
relation between time changes in strength and intensity. That is, strength is equally
likely to increase or decrease as a typhoon intensifies. Commonly, intensification pre-
cedes strengthening, and weakening of the core precedes that of the outer circulation.
Classification of the observations by eye size [small (radius ≤ 15 km), medium (16-30
km), large (30-120 km), and eyewall absent] reveals correlations between intensity
and strength, even though none could be found for the sample as a whole. These
correlations may become evident because eye size acts as a proxy for phase of the
typhoon life cycles.

Some relevant references are: Brand 1972; Merrill 1984; and Weatherford and
Gray 1988a,b)

9See section 1.XX



CHAPTER 1. OBSERVATIONS OF TROPICAL CYCLONES 17

Figure 1.11: Streamline isotach analyses at 250, 500, and 850 mb for a composite
Southern Hemisphere tropical cyclone, together with a typical visible satellite image.
(From Holland 1984)

1.1.7 Asymmetries

Normally only the inner-core regions of intense tropical cyclones show a significant
degree of axial-symmetry. As shown in Fig. 1.11 for a Southern Hemisphere cyclone,
the axisymmetric core is typically surrounded by a less symmetric outer vortex that
merges into the synoptic environment. In the lower troposphere, the cyclonic circula-
tion may extend more than 1000 km from the centre. The boundary between cyclonic
and anticyclonic circulation slopes inward with height, so that the circulation in the
upper troposphere is primarily anticyclonic except near the centre. The flow asym-
metries in this region have a significant effect on the vortex motion (Chapter 5). In
tropical cyclones that originate in the monsoon trough, the asymmetric flow is often
associated with a band of convection that joins the cyclone to the trough (Holland
1984).

Spiral-shaped patterns of precipitation characterize radar and satellite images of
tropical cyclones (Fig. 1.12). The earliest radar observations of tropical cyclones
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detected these bands, which are typically 5-50 km wide and 100-300 km long. Nev-
ertheless, many aspects of their formation, dynamics, and interaction with the sym-
metric vortex are still unresolved. The precipitation-free lanes between bands tend
to be somewhat wider than the bands. As the tropical cyclone becomes more intense,
the inward ends of the bands approach the center less steeply and then approximate
arcs of circles.

Figure 1.12: Typical banded radar reflectivity pattern in a Northern Hemisphere
tropical cyclone with 50-60 m s−1 maximum wind in a sheared environmental flow
(From Willoughby 1988)

A dynamical distinction exists between convective bands that spiral outward from
the center and convective rings that encircle the center. Because the bands often join
a ring or appear to wrap around the centre (Dvorak 1984), this distinction is often
difficult to make in radar or satellite images.

Although precipitation in some bands is largely from stratiform clouds, conden-
sation in most bands tends to be concentrated in convective cells rather than spread
over wide mesoscale areas. Convective elements form near the inner, upwind edges of
the bands, move through the bands, and dissipate on the outward, downwind edges.
As the cells cross the band, they also move inward along the band. The dissipating
elements feed an extensive anvil and generate widespread stratiform precipitation
through horizontal advection of convective debris.

Some key observational studies of spiral bands are summarized by Willoughby
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(1995), who gives a comprehensive list of references.
Dual-Doppler radar observations of a rainband in Supertyphoon Abby 1983 con-

firmed inflow from the inward (concave) side, a locus of mesoscale ascent along the
concave edge of the band, and a locus of mesoscale descent along the outer (convex)
side. This pattern of inflow stemmed from the band’s steep inward crossing angle of
25◦. The roots of the updrafts lay in convergence between the swirling flow and gust
fronts that are produced by the downdrafts. The updrafts leaned outward from the
typhoon center toward the convex side of the band and fed an extensive anvil that
spread downwind from the band. The band moved more slowly than the surrounding
winds, i.e., it propagated upwind. Even though the band was over land at 36◦N, the
equivalent potential temperature at the surface was 355 K, and this band should be
considered representative of squall-line bands in hurricanes.

These Abby observations contrast with aircraft and radar observations of a ”band”
in Hurricane Floyd 1981. In the Floyd case, the low-level air spiraled inward more
steeply than the band, so that the band intercepted the radial inflow on its outer, con-
vex side. The inflow passed under the anvil between the convective-scale, precipitation-
driven downdrafts to feed an updraft on the inner, concave side of the band. As in
Typhoon Abby, the updraft sloped outward over the downdraft and fed an anvil
extending away from the tropical cyclone center. The 20◦K decrease in low-level θe

across the band indicates that the band was a barrier to inflow. Independent obser-
vations in Hurricane Earl emphasized that cooling and shallowing of the boundary
layer occurred as the vortex-scale inflow passed under or between the cells of the
bands (Fig. 1.13). This reduction in boundary-layer energy may have inhibited con-
vection nearer the centre. Sometimes the band may draw air from both sides. An
important difference between a convective ring and a spiral band is that the swirling
wind feeds the updraft in a band from the concave side, whereas the radial flow feeds
the updraft in a convective ring primarily from the convex side.

Some bands appear to move outward, while others maintain a fixed location
relative to the translating tropical cyclone centre. Moving bands, and other convec-
tive features, are frequently associated with cycloidal motion of the tropical cyclone
centre, and intense asymmetric outbursts of convection (supercells) are observed to
displace the tropical cyclone centre by tens of kilometres.

1.2 Formation regions

Tropical cyclones form in many parts of the world from initial convective distur-
bances sometimes referred to as cloud clusters. As the clusters evolve from a loosely
organized state into mature, intense storms, they pass through several characteristic
stages, but a uniform terminology does not exist to describe these stages over the
different regions of the globe. Indeed there has been much debate in the literature
about the meaning of such terms as ”tropical cyclogenesis”, ”tropical-cyclone for-
mation,” and ”tropical-cyclone development” (see e.g. McBride 1995). There are
differing opinions also as to when genesis has occurred and intensification has com-
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Figure 1.13: Thermodynamic structure of a rainband in Hurricane Earl 1986. The
grey outline shows the cloud boundary, and the contours show radar reflectivity.
Heavy horizontal and vertical arrows indicate the cross-band (Vcro) and convective
vertical flows; lighter arrows indicate mesoscale subsidence. (From Powell 1990b)

Figure 1.14: Radar echo pattern seen in Hurricane Alicia (1983) labelled according
to the schematic to Fig. 1.14. Contours are for 25 and 40 dBZ. (From Marks and
Houze 1987)
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menced. McBride op. cit. remarks that the existence of a (warm) core region can be
identified by the time that the system is classified as a tropical cyclone (i.e., mean
wind speeds exceeding 17.5 m s−1 or 34 kt). Further development of the maximum
wind speeds beyond 17.5 m s−1 will be referred to as intensification. This stage
includes the evolution of the core into a well-defined radar eye.

Generally a larger scale (i.e., thousand kilometre) vortex already exists when the
core develops and much of the research into tropical cyclone formation has examined
the formation of the large-scale vortex in which the core forms. The distinction be-
tween core formation and large-scale vortex formation is important because different
dynamical processes may be involved.

Here we follow McBride and refer to tropical cyclone formation as the transition
from the cloud cluster state to the tropical cyclone stage with winds exceeding 17.5
m s−1. Changes in wind speed of the outer vortex are referred to as outer structure
change, or strength change, or size change.

Figure 1.15: Locations of tropical cyclone formation over a 20-year period. (From
Gray, 1975)

Each year approximately 80 tropical cyclones occur throughout the world, and
about two thirds of these reach the severe tropical cyclone stage. Gray (1975) doc-
umented the initial detection points of each cyclone for a 20-year period fig. 1.15.
Preferred regions of formation are over the tropical oceans and it is significant that
these coincide broadly with regions of high sea surface temperatures (SSTs) (1.16).
The warmest waters occur in the Western Pacific, the so-called ”warm pool region”,
while the ocean temperatures in the Southeast Pacific is relatively cold. Indeed, cli-
matological studies by Palmén (1948, 1957) and Gray (1995) have shown that tropical
cyclogenesis occurs only in regions where the sea surface temperature is above 26.5◦C
and where the depth of the 26◦C isotherm is 60 m or more. No formations occur
within about 2.5o lat. of the equator. Most of the formations (87%) occur between
20oN and 20oS (Fig. 1.17). Another interesting statistic is the frequency of tropical
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cyclones per 100 years within any point as shown in Fig. 1.18.

Figure 1.16: Annual mean sea-surface temperature (◦ C). (From ???)

About two thirds of all cyclones occur in the Northern Hemisphere, and twice as
many tropical cyclones occur in the Eastern as in the Western Hemisphere. These
differences are due in part to the absence of tropical cyclones in the South Atlantic
and the eastern South Pacific. Tropical cyclones are seasonal phenomena, and most
basins have a maximum frequency of formation during the late summer to early
fall period. The Southern Hemisphere peak occurs in January to March and the
Northern Hemisphere peak is from July to September. The most active region is the
Northwest Pacific Ocean, where typhoons occur in all seasons.

The seasonal distribution of formation locations is governed by two major factors.
One is the association between tropical cyclone formation and SST, with the highest
values of SST occurring during the late summer. Notice that regions of warm water
also extend farther from the equator in the Northern Hemisphere in association with
the Gulf Stream and the Kuroshio currents. However, SST is only one factor, as is
evidenced by the absence of cyclones in the South Atlantic despite similar values of
SST at certain times of the year.

The second factor in the seasonal distributions is related to the seasonal vari-
ations in the location of the monsoon trough. As discussed by Gray (1968), the
Inter-Tropical Convergence Zone (ITCZ), which extends semi-continuously around
the globe, may occur as a convergence line between trade easterlies from the North-
ern and Southern Hemispheres, or as a convergence zone in westerly monsoon flow.
In this latter configuration, the monsoon westerlies usually have trade easterlies on
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Figure 1.17: Latitudes at which initial disturbances that later became tropical cy-
clones were first detected. (From Gray 1975)

their poleward side. The shear line separating the monsoon westerlies from easter-
lies is known as the monsoon trough or monsoon shear line and is a climatologically
preferred region for tropical cyclone formation. Typical upper- and lower-level flow
patterns for the two modes of the ITCZ are illustrated schematically in Fig. 1.19.
The trade convergence line of the ITCZ typically has large vertical wind shear. When
monsoon westerlies are present, the low-level monsoon shear line is overlain (in the
mean seasonal pattern) by the upper-level subtropical ridge. In western North Pa-
cific, the ridge above the monsoon trough during the summer is called the subequato-
rial ridge. This configuration of trade easterlies overlain with westerlies and monsoon
westerlies overlain with easterlies gives a (seasonal-mean) vertical wind shear close to
zero, with westerly shear on the poleward side and easterly shear on the equatorward
side (bottom panel. Fig. 1.19).

The only region of cyclone formation not associated with a monsoon trough is
the North Atlantic. Possible explanations for this anomaly are discussed below.

In the first global climatology of tropical cyclogenesis, Gray (1968, 1975, 1979)
found that cyclone formation is related to six environmental factors:

(i) large values of low-level relative vorticity;
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Figure 1.18: Frequency of tropical cyclones per 100 years within 140 km of any point.
Solid triangles indicate maxima, with values shown. Period of record used is shown
in boxes for each basin. (From WMO, 1993)

(ii) a location at least a few degrees poleward of the equator, giving a significant
value of planetary vorticity;

(iii) weak vertical shear of the horizontal winds; iv) sea-surface temperatures (SSTs)
exceeding 26oC, and a deep thermocline;
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Figure 1.19: Schematics of trade-wind (left) and monsoon-type (two right columns)
ITCZ flow regimes. The monsoon regimes are subdivided into those typical of the
Australian/Southeast Indian Ocean ITCZ during January (middle) and the western
North Pacific basin during August (right). Vertical wind shear between the low-level
and upper-level flow is indicated in the lower panels.

(v) conditional instability through a deep atmospheric layer; and

(vi) large values of relative humidity in the lower and middle troposphere.

The first three factors are functions of the horizontal dynamics, while the last
three are thermodynamic parameters. Gray defined the product of (i), (ii), and (iii)
to be the dynamic potential for cyclone development, while the product of (iv), (v),
and (vi) may be considered the thermodynamic potential. The diagnosed tropical
cyclone formation frequency derived by Gray (1975) using the above parameters
is quite similar to the observed formation locations in (Fig. 1.15). However, the
combination or the above six parameters were ”tuned” to agree with the mean sea-
sonal and geographical distributions of tropical cyclone development. As discussed
by Gray (1975) and McBride (1981a), the thermodynamic parameters vary slowly
in time and would be expected to remain above any threshold values necessary for
tropical cyclone development throughout the cyclone season. On the other hand,
the dynamic potential can change dramatically through synoptic activity. Thus, it
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was hypothesized by Gray that cyclones form only during periods when the dynamic
potential attains a magnitude above its regional climatological mean.

Frank (1987) noted that the above six environmental parameters are not inde-
pendent. In the tropics, regions of high sea-surface temperatures are invariably cor-
related with conditional instability due to the weak horizontal temperature gradients
in the lower troposphere. High humidities in the middle levels also tend to occur in
convective clusters over warm waters, and virtually all areas with widespread deep
convection are associated with mean ascending motion. Thus, Frank reduced the list
to four parameters by combining (i) and (ii) into the absolute vorticity at low levels,
deleting (v), and adding mean upward vertical motion to (vi). A number of obser-
vational studies have derived parameters relevant to the potential of an individual
disturbance to develop into a cyclone.

1.2.1 Large-scale conditions for formation

The observational studies have isolated a number of synoptic-scale aspects that have
an important role in the formation process:

(i) Tropical cyclones form from pre-existing disturbances containing abundant
deep convection;

(ii) The pre-existing disturbance must acquire a warm core thermal structure through-
out the troposphere;

(iii) Formation is preceded by an increase of lower tropospheric relative vorticity
over a horizontal scale of approximately 1000 to 2000 km;

(iv) A necessary condition for cyclone formation is a large-scale environment with
small vertical wind shear;

(v) An early indicator that cyclone formation has begun is the appearance of curved
banding features of the deep convection in the incipient disturbance;

(vi) The inner core of the cyclone may originate as a mid-level meso-vortex that
has formed in association with a pre-existing mesoscale area of altostratus (i.e.,
a Mesoscale Convective System or MCS); and

(vii) Formation often occurs in conjunction with an interaction between the incipient
disturbance and an upper-tropospheric trough.

Evidence for these seven observations are discussed in detail by McBride (1995).
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1.3 Tropical-cyclone tracks

Figure 1.20 shows the tracks of all tropical cyclones (maximum winds > 17 m s−1)
for the period 1979-1988 and Fig. 1.21 shows the mean direction of all hurricanes
during the period indicated. Tropical cyclones form over the warm tropical oceans
and typically move westwards and polewards, although tracks of individual storms
can be quite erratic. To a first approximation tropical cyclones are steered by a mass-
weighted average of the broadscale winds through the depth of the troposphere. It
is common for storms that reach sufficiently high latitudes to recurve and move
eastwards. Tropical cyclones rapidly lose their intensity when they move over land,
but they often continue to produce copious amounts of rain. In many cases of
landfalling storms, the majority of damage is caused by widespread flooding rather
than by strong winds. Near the coast, however, much damage may be caused by
high winds and by coastal storm surges. The dynamics of tropical-cyclone motion is
discussed in Chapter 5.
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Figure 1.20: Tracks of all tropical cyclones (maximum winds > 17 ms−1) for the
period 1979-1988. (From WMO, 1993)
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Figure 1.21: Mean direction of tropical cyclone motion over the periods indicated.
(From WMO, 1993)



Chapter 2

DYNAMICS OF MATURE
TROPICAL CYCLONES

2.1 The primary and secondary circulation

To a good first approximation the mature tropical cyclone consists of a horizon-
tal quasi-symmetric circulation on which is superposed a thermally-direct vertical
(transverse) circulation. These are sometimes referred to as the ”primary circula-
tion” and ”secondary circulation”, respectively, terms which were coined by Ooyama
(1982). The former refers to the tangential flow rotating about the central axis, and
the latter to the ”in-up-and-out circulation” (low and middle level inflow, upper-
level outflow). When these two components are combined, the picture emerges of
air parcels spiralling inwards, upwards and outwards. The combined spiralling cir-
culation is energetically direct because the rising branch of the secondary circulation
near the centre is warmer than the subsiding branch, which occurs at large radial
distances (radii > 500 km).

In this chapter we examine the dynamics of the spiralling circulation of tropical
cyclones on the basis of the physical laws governing fluid motion and thermody-
namic processes that occur. For simplicity we study the dynamics of a stationary
axisymmetric hurricane-like vortex. In later chapters we consider the dynamics of
tropical-cyclone motion and examine the asymmetric features of storms. We start
by giving an overall picture of the dynamics and then go into detail about particular
important aspects. First we introduce the governing equations and the important
concept of buoyancy.

2.2 The equations of motion

To begin with we consider the full hydrostatic equations of motion, but with the
density tendency in the continuity equation omitted. The primitive equations of
motion comprising the horizontal momentum equation, the hydrostatic equation,

30
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the continuity equation, the thermodynamic equation and the equation of states for
frictionless motion in a rotating frame of reference on an f -plane may be expressed
in cylindrical polar coordinates, (r, λ, z), as:
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where (u, v, w) is the velocity vector in component form, ρ is the air density, f is the
Coriolis parameter, p is the pressure, θ is the potential temperature θ̇ is the diabatic
heating rate, π = (p/p∗)κ is the Exner function, Rd is the specific gas constant for
dry air, κ = Rd/cp, cp is the specific heat at constant pressure, and p∗ = 1000 mb.
The temperature is defined by T = πθ. For tropical-cyclone scale motions it is a
good approximation to make the hydrostatic approximation, whereupon Eq. (2.3)
reduces to

∂p

∂z
= −ρg. (2.7)

Multiplication of Eq. (2.2) by r and a little manipulation leads to the equation
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where

M = rv +
1

2
fr2, (2.9)

is the absolute angular momentum per unit mass of an air parcel about the rotation
axis. If the flow is axisymmetric (and frictionless), the right-hand-side of (2.8) is zero
and the absolute angular momentum is conserved.

Exercise 2.1 Assuming the most general form of the mass conservation equation:
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show that the absolute angular momentum per unit volume,
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(
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2
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)
,

satisfies the equation:
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2.3 The primary circulation

Important aspects of the basic structure of a mature tropical cyclone can be deduced
from two simple equations that express an exact balance of forces in the vertical
and radial directions. These equations enable one to develop a simple theory for the
primary circulation.

Figure 2.1: Schematic diagram illustrating the gradient wind force balance in the
primary circulation of a tropical cyclone.

Let us assume that the flow is steady (∂/∂t ≡ 0) and let us ignore the secondary
circulation, i.e. we assume that the radial velocity is identically zero (see Fig. 2.1).
Then Eq. (2.1) reduces to the gradient wind equation:

v2

r
+ fv =

1

ρ

∂p

∂r
. (2.10)

The force balance expressed by this equation is called gradient wind balance.
Willoughby (1990) has shown that, in the free atmosphere, the azimuthal-mean tan-
gential circulation of tropical cyclones is in gradient balance to a good approximation.
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Taking (∂/∂z)[ρ× Eq. (2.10)] and (∂/∂r)[Eq. (2.7)] and eliminating the pressure
we obtain the thermal wind equation

g
∂ ln ρ

∂r
+ C

∂ ln ρ

∂z
= −∂C

∂z
. (2.11)

where we have defined

C =
v2

r
+ fv (2.12)

to represent the sum of the centrifugal and Coriolis forces per unit mass. Equation
(2.11) is a linear first-order partial differential equation for ln ρ. The characteristics
of the equation satisfy

dz
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=

C

g
. (2.13)

The characteristics are just the isobaric surfaces, because a small displacement
(dr, dz) along an isobaric surface satisfies (∂p/∂r)dr + (∂p/∂z)dz = 0. Then, us-
ing the equations for hydrostatic balance (∂p/∂z = −gρ) and gradient wind balance
(∂p/∂r = Cρ) gives the equation for the characteristics. Alternatively, note that
the pressure gradient per unit mass, (1/ρ)(∂p/∂r, 0, ∂p/∂z) equals (C, 0,−g), which
defines the ”generalized gravity”, ge; see Fig. 2.4. The density variation along a
characteristic is governed by the equation

d

dr
ln ρ = −1

g

∂C

∂z
. (2.14)

Given the vertical density profile, ρa(z), Eqs. (2.13) and (2.14) can be integrated
inwards along the isobars to obtain the balanced axisymmetric density and pressure
distributions. In particular, Eq. (2.13) gives the height of the pressure surface that
has the value pa(z), say, at radius R.

Since ∂C/∂z = (2v/r + f)(∂v/∂z), it follows from (2.14) that for a barotropic
vortex (∂v/∂z = 0), ρ is constant along an isobaric surface, i.e. ρ = ρ(p), whereupon
Tv is a constant also.

The thermal wind equation (2.11), or equivalently Eq. (2.14), shows that in a
cyclonic vortex in the northern hemisphere (v > 0) with tangential wind speed that
decays with height (∂v/∂z < 0), log ρ and hence ρ decrease with decreasing radius
along the isobaric surface. Thus the virtual temperature Tv(r, z) and θ increase
and the vortex is warm cored (i.e. ∂Tv/∂r < 0). This prediction of the thermal
wind equation is consistent with the observation that tropical cyclones are warm-
cored systems, and that the tangential wind speed decreases with altitude. If the
tangential wind speed were to increase with height (∂v/∂z > 0) the vortex would
be cold cored. Note that the characteristics dip down as the axis is approached on
account of Eq. (2.13). The reason for the warm core structure of tropical cyclones
is discussed in section 2.5.

The analysis above shows that any steady vortical flow with velocity field u =
(0, v(r, z), 0) is a solution of the basic equation set (2.1) - (2.6), when the density field
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satisfies (2.11). Willoughby’s observational evidence that the primary circulation of
a hurricane is approximately in gradient wind balance makes the foregoing analysis
a good start in understanding the structure of this circulation. However the solution
neglects the secondary circulation associated with nonzero u and w and it neglects
the effects of friction near the sea surface. These are topics of subsequent subsections.

Exercise 2.2 Show that in terms of the Exner function, Eqs. (2.10) and (2.7)

may be written as

χC = cp
∂π

∂r
and − χg = cp

∂π

∂z
, (2.15)

respectively.

Exercise 2.3 Show that Eq. (2.11) may be reformulated as
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where χ = 1/θ.

It is instructive to compare the magnitude of the centrifugal and Coriolis terms
in Eq. (2.1), their ratio being

Ro(r) =
v

fr
. (2.17)

This equation defines a local Rossby number for the flow. Let rm be radius of maxi-
mum tangential wind speed of a tropical cyclone and vm the tangential wind speed
at this radius. Then Ro is typically on the order of 40÷ (40× 103 × 5× 10−5) = 20,
typical values for rm and vm being 40 km and 40 m s−1, respectively. It follows that
the inner core region of a tropical cyclone is approximately in cyclostrophic balance,
i.e. the Coriolis forces are small compared with the centrifugal forces. However, at
a radius of 200 km, where the wind speeds may be on the order of 10 m s−1, Ro ≈ 1
and these two forces are comparable. As the radius increases further, the circulation
becomes more and more geostrophic, i.e. Ro becomes small compared with unity and
the Coriolis forces become dominant.

2.4 The tropical-cyclone boundary layer

It turns out that the effects of surface friction in a tropical cyclone have a dramatic
influence not only on the flow in the layer in which friction acts, the so-called bound-
ary layer, but also on the flow above this layer. The boundary layer is typically about
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500 m deep. One obvious effect of friction is to reduce the tangential wind speed
near the surface, and therefore the centrifugal and Coriolis forces. However, a scale
analysis shows that it has little effect on the pressure field so that the radial pressure
gradient in the boundary layer is approximately the same as that immediately above
the layer (see e.g. Smith 1968). Thus there is a net inward force on air parcels in
the boundary layer, which drives inflow in the layer (Fig. 2.2). Far from the rotation
axis, both the inflow velocity and the radial mass flux increase with decreasing radius
and this leads to forced subsidence above the boundary layer. At inner radii, where
the inflow and mass flux begin to decline, air is discharged from the boundary layer
into the vortex above. In other words, the presence of the boundary layer forces ver-
tical motion in the main part of the vortex above the boundary layer. In the tropical
cyclone, the air in the boundary layer is moistened as it spirals inwards over the warm
ocean. This moistening elevates the pseudo-equivalent potential temperature of the
boundary-layer air, θeb, so that ∂θeb/∂r < 0. We consider now the fate of this moist
air and return in Chapter 3 to examine in detail the dynamics and thermodynamics
of the boundary layer. There we show that given the tangential wind speed distrib-
ution for a steady axisymmetric vortex, one can determine the radial distribution of
the vertically-averaged wind speed components in the boundary layer as functions
of radius as well as the induced vertical velocity at the top of the boundary layer.
Given also the vertically-averaged temperature and specific humidity at some large
radius and the sea surface temperature beneath the vortex, one can determine the
radial variation of the vertically-averaged θeb in the boundary layer.

Figure 2.2: Schematic diagram illustrating the disruption of gradient wind balance
by friction in the boundary layer leaving a net inward pressure gradient that drives
the secondary circulation with inflow in the boundary layer and outflow above it.
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2.5 Moist convection and the sloping eyewall

When the inward-spiralling moisture-laden air is forced upwards out of the boundary
layer in the inner core region, it expands and cools. Condensation rapidly ensues
and as the air continues to rise in the eyewall clouds, latent heat is released and a
significant fraction of the condensed water falls out of the clouds as precipitation. The
latent heat release is responsible for the warm core in the cyclone, but only a small
fraction of the heat released is manifest as an elevated temperature perturbation
at a particular height; most of it is offset by the adiabatic cooling that occurs as
air parcels rise and expand. We may think of the effect of the heat release on the
temperature field as follows. To a first approximation, ascending air parcels conserve
their θe as indicated in Fig. 2.3. Since the air in the eyewall clouds is saturated, the
virtual temperature of an air parcel at a particular pressure level is a monotonically-
increasing function of its θe, which, in turn, is equal to the θe it had when it left the
boundary layer. Therefore, at least in the eyewall cloud region the radial gradient
of Tv(z) is determined by the radial gradient of θe at the top of the boundary layer,
which as noted above is negative. In other words, at any level in the cloudy region,
(∂Tv/∂r)p < 0, which explains why the tropical cyclone has a warm core, at least
outside the eye. The reason that the eye is warm also is examined in section 2.7. The
discussion section 2.4 indicates that the boundary layer in a mature hurricane controls
not only the rate at which air ascends at a particular radius, but determines also
the radial gradient of virtual temperature (and hence density) above the boundary
layer, at least in regions of ascent.

From mass continuity, the air that converges in the boundary layer must flow
outwards above the boundary layer, a fact that accounts for the outward slope of the
eyewall and of air parcel trajectories. Ascending air parcels approximately conserve
their absolute angular momentum, M , as well as their θe so that (absolute) angular
momentum surfaces and the moist isentropes are approximately coincident (at least
where there is cloud) and these surfaces slope outwards with height as indicated
schematically in Fig. 2.3.

We emphasize that in the foregoing picture of the warm-core structure of a trop-
ical cyclone, the latent heat release in clouds serves merely to maintain the conser-
vation of pseudo-moist entropy characterized by θe along air-parcel trajectories. The
warm-core itself is seen as a result of the increase in θe with decreasing radius as
determined by the thermodynamic processes in the boundary layer, which are exam-
ined in detail in Chapter 3. This picture was first proposed by Emanuel (1986) and
forms the basis for his steady model for the tropical cyclone described in Chapter 4.

Many early papers consider the role of latent heat release as providing local
buoyancy in the eye-wall clouds and suggest that it is this buoyancy that ”drives”
the secondary circulation. We shall see that this explanation is raises many questions.
For example the temperature in the eyewall clouds is typically less than in the eye.
Moreover, we have seen that much of the temperature field of the tropical cyclone
resides in thermal wind balance. To examine these questions in more detail we need
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Figure 2.3: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. Air spirals inwards in a shallow
boundary layer near the sea surface, picking up moisture as it does so. The absolute
angular momentum, M , and equivalent potential temperature, θe of an air parcel is
conserved after the parcel leaves the boundary layer and ascends in the eyewall clouds.
The precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

to review the concept of air-parcel buoyancy, especially in the context of rapidly-
rotating vortices. This is the subject of the next section.

2.6 Buoyancy and generalized buoyancy

The buoyancy of an air parcel in a density-stratified air layer is defined as the differ-
ence between the weight of air displaced by the parcel (the upward thrust according
to Archimedes principle) and the weight of the parcel itself. This quantity is normally
expressed per unit mass of the air parcel under consideration, i.e.

b = −g
(ρ− ρa)

ρ
, (2.18)

where ρ is the density of the parcel, ρa = ρa(z) is the density of the environment at
the same height z as the parcel, and g is the acceleration due to gravity. Here and
elsewhere the vertical coordinate z is defined to increase in the direction opposite to
gravity. The calculation of the upward thrust assumes that the pressure within the
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air parcel is the same as that of its environment at the same level, an assumption
that is invalid a rapidly-rotating vortex. In the latter case one can define a gener-
alized buoyancy force, which acts normal to the isobaric surface intersecting the air
parcel and which is proportional to the density difference between the parcel and its
environment along that surface (see below).

A similar expression for the buoyancy force given in (2.18) may be obtained by
starting from the vertical momentum equation and replacing the pressure p by the
sum of a reference pressure pref and a perturbation pressure, p′. The former is taken
to be in hydrostatic balance with a prescribed reference density ρref , which is often
taken, for example, as the density profile in the environment. In real situations, the
environmental density is not uniquely defined, but could be taken as the horizontally-
averaged density over some large domain surrounding the air parcel. Neglecting
frictional forces, the vertical acceleration per unit mass can be written alternatively
as

Dw

Dt
= −1

ρ

∂p

∂z
− g or,

Dw

Dt
= −1

ρ

∂p′

∂z
+ b (2.19)

where w is the vertical velocity, D/Dt is the material derivative, and t is the time
presents a similar derivation, but makes the anelastic approximation (Ogura and
Phillips, 1962), in which the density in the denominator of (2.18) is approximated
by that in the environment. Clearly, the sum of the vertical pressure gradient and
gravitational force per unit mass acting on an air parcel is equal to the sum of
the vertical gradient of perturbation pressure and the buoyancy force, where the
latter is calculated from Eq. (2.18) by comparing densities at constant height. The
expression for b in (2.19) has the same form as that in (2.18), but with ρref in
place of ρa. However, the derivation circumvents the need to assume that the local
(parcel) pressure equals the environmental pressure when calculating b, which, as
noted above, is not valid for a rapidly-rotating vortex. The foregoing decomposition
indicates that, in general, the buoyancy force is not uniquely defined because it
depends on the (arbitrary) choice of a reference density. However, the sum of the
buoyancy force and the perturbation pressure gradient per unit mass is unique. If
the motion is hydrostatic, the perturbation pressure gradient and the buoyancy force
are equal and opposite, but they remain non-unique.

Using the gas law (p = ρRdT and the usual definition of virtual potential tem-
perature, the buoyancy force per unit mass can be written as

b = g

[
(θ − θref )

θref

− (κ− 1)
p′

pref

]
, (2.20)

where θ is the virtual potential temperature of the air parcel in K and θref is the
corresponding reference value. The second term on the right-hand-side of (2.20)
is sometimes referred to as the “dynamic buoyancy”, but in some sense this is a
misnomer since buoyancy depends fundamentally on the density perturbation and
this term simply corrects the calculation of the density perturbation based on the
virtual potential temperature perturbation. If the perturbation pressure gradient
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terms in (2.19) are written in terms of the Exner function and/or its perturbation,
the second term in (2.20) does not appear in the expression for buoyancy.

The expression (2.20) is valid also in a rapidly rotating vortex, but as shown in
section 2.5, there exists then a radial component of buoyancy as well. When clouds
are involved it may be advantageous to include the drag of hydrometeors in the
definition of buoyancy, but we omit this additional effect here.

Figure 2.4: Schematic radial-height cross-section of isobaric surfaces in a rapidly-
rotating vortex showing the forces on an air parcel including the gravitational force
g, per unit mass, and the sum of the centrifugal and Coriolis forces C = v2/r + fv
per unit mass. Note that the isobaric surfaces are normal to the local ”generalized
gravitational force” ge = (C, 0,−g). The Archimedes force −geρref slopes upwards
and inwards while the weight geρ slopes downwards and outwards. Thus the net
buoyancy force acting on the parcel per unit mass is |ge|(ρref − ρ)/ρ in the direction
shown.

In a rapidly-rotating, axisymmetric vortex, an air parcel experiences not only the
gravitational force, but also the radial force C = v2/r +fv, where v is the tangential
wind component at radius r. If the vortex is in hydrostatic and gradient wind
balance, the isobaric surfaces slope in the vertical and are normal to the effective
gravity, ge = (C, 0,−g), expressed in cylindrical coordinates (r, λ, z) (see Fig. 2.4).
The Archimedes force acting on the parcel is then −geρref and the effective weight of
the parcel is geρ, where ρref is now the far-field (reference-) density along the same
isobaric surface as the parcel. Accordingly, we may define a generalized buoyancy
force per unit mass :

b = ge
ρ− ρref

ρ
, (2.21)

analogous to the derivation of (2.18). Note that unless v(v + rf) < 01, fluid parcels

1I need to refer to a section on vortex stability, still to be written.
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that are lighter than their environment have an inward-directed component of gen-
eralized buoyancy force as well as an upward component, while heavier parcels have
an outward component as well as a downward component. This result provides the
theoretical background for a centrifuge.

2.7 The tropical cyclone eye

Observations show that the eye is a cloud free region surrounding the storm axis
where the air temperatures are warmest. Therefore, it would be reasonable to surmise
that the air within it has undergone descent during the formative stages of the
cyclone, and that possibly it continues to descend. The question then is: why doesn’t
the inflowing air spiral in as far as the axis of rotation. We address this question
later, but note here that eye formation is consistent with other observed features
of the tropical cyclone circulation. The following discussion is based on that of
Smith (1980). Assuming that the primary circulation is in gradient wind balance,
we may integrate Eq. (2.10) with radius to obtain a relationship between the pressure
perturbation at a given height z on the axis to the tangential wind field distribution,
i.e:

p(0, z) = pa(z)−
∫ ∞

0

ρ

(
v2

r
+ fv

)
dr, (2.22)

where pa(z) = p(∞, z) is the environmental pressure at the same height. Differ-
entiating Eq. (2.22) with respect to height and dividing by the density gives the
perturbation pressure gradient per unit mass along the vortex axis:

−1

ρ

∂(p− pa)

∂z
= −1

ρ

∂

∂z

∫ ∞

0

ρ

(
v2

r
+ fv

)
)dr. (2.23)

Observations in tropical cyclones show that the tangential wind speed decreases
with height above the boundary layer and that the vortex broadens with height in the
sense that the radius of the maximum tangential wind speed increases with altitude
(see Fig. 1.11). This behaviour, which is consistent with outward-slanting absolute
angular momentum surfaces as discussed above, implies that the integral on the right-
hand-side of Eq. (2.23) decreases with height. Then Eq. (2.23) shows that there must
be a downward-directed perturbation pressure gradient force per unit mass along the
vortex axis. This perturbation pressure gradient tends to drive subsidence along and
near to the axis to form the eye. However, as this air subsides, it is compressed
and warms relative to air at the same level outside the eye and thereby becomes
locally buoyant (i.e. relative to the air outside the eye). This upward buoyancy
approximately balances the downward directed (perturbation) pressure gradient so
that the actual subsidence results from a small residual force. In essence the flow
remains close to hydrostatic balance.

As the vortex strengthens, the downward pressure gradient must increase and the
residual force must be downwards to drive further subsidence. On the other hand, if
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the vortex weakens, the residual force must be upwards, allowing the air to re-ascend.
In the steady state, the residual force must be zero and there is no longer a need for
up- or down motion in the eye, although, in reality there may be motion in the eye
associated with turbulent mixing across the eyewall or with asymmetric instabilities
within the eye.

It is not possible to measure the vertical velocity that occur in the eye, but one
can make certain inferences about the origin of air parcels in the eye from their
thermodynamic characteristics, which can be measured (see e.g. Willoughby, 1995).

2.8 Radiative cooling

The tropical atmosphere is stably stratified so that large vertical displacements of air
parcels may only occur in the presence of diabatic processes: parcel ascent can occur
over significant depths only if there is latent heat release to counter adiabatic cooling
(i.e. if the ascent occurs in cloud); and parcel subsidence can occur over a substantial
depth only if there is radiative cooling to counter adiabatic warming. Thus radiative
effects in tropical cyclones cannot be ignored if we wish to understand the subsiding
branch of the secondary circulation. The following discussion of radiative effects is
based on that of Anthes (1979, p218-9).

Diabatic heating rates associated with the absorption of shortwave radiation en-
ergy and the emission of longwave radiation are quite small compared with the heat-
ing rates associated with condensation in deep precipitating clouds. In the cloud-free
regions of the tropical atmosphere the mean radiative cooling rate is 1 to 2◦C/day
from the surface to 10 km (≈ 250 mb) and decreases to about zero at the tropopause.
In a region of multi-layer clouds, however, there is practically no radiative cooling in
the clouds, but there is strong cooling at their top.

The result of differential radiative heating between the cloud-free environment
and a cloudy tropical depression or tropical cyclone is to generate a direct circulation,
with sinking motion in the clear air and rising motion in the cloudy air (Fig. 2.5). In
the tropical cyclone, radiation acts to maintain the baroclinicity associated with the
warm core. However, it is a smaller effect than differential heating by condensation,
except possibly in lightly precipitating systems. This may be seen by relating the
mean diabatic rate of temperature in a column of air of unit cross-section extending
from 1000 mb to 100 mb to the rainfall rate Rf (cm/day):

∂T

∂t
= −2.67Rf (oC/day). (2.24)

For typical cloud cluster rainfall rates of 2.5 cm/day (Ruprecht and Gray, 1976),
the average tropospheric rate of temperature change would be 6.7 cm/day, which is
about five times larger than the effect of radiation. For hurricanes, a typical rainfall
rate in the inner 222 km region is 9.5 cm/day, which gives ∂T/∂t = −25◦C/day,
more than an order of magnitude larger than the radiative cooling rate. Thus,
without latent heat release, only a slow meridional circulation could be maintained
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Figure 2.5: Schematic diagram of radiatively-induced circulation in a tropical distur-
bance. In clear air surrounding the cloudy centre, diabatic cooling is about 2◦C/day.
In the cloudy interior, radiative cooling is nearly zero. The differential cooling in-
duces sinking motion in the environment, where pressures rise at the surface and fall
aloft. Flow in low levels is toward the centre of the disturbance, aloft it is outward.
(From Anthes, 1979)

by radiation because the lifting of statically-stable air leads to cooling and a negative
buoyancy force that opposes the circulation induced by radiative cooling. With
latent heating, however, the mean adiabatic cooling in the ascending branch of the
secondary circulation is opposed and much larger upward velocities may be attained.

When direct absorption of shortwave solar radiation is considered, a diurnal vari-
ation of the radial differential cooling rate is introduced. The differential cooling
during the day is reduced from a nocturnal value of 2◦C/day to a value of about
1◦C/day in the middle troposphere. For ∂T/∂p ≈ 8◦C/(100 mb), ∂T/∂t ≈ 1◦C/day
corresponds to a vertical velocity ω of about 12.5 mb/day, which is supported by
a mean divergence of 5 × 10−7 s−1 between the surface and 500 mb. This is much
smaller than the observed diurnal variation in low-level divergence, which is about
5× 10−6 s−1 (Gray and Jacobson, 1977). What probably happens is that the small
diurnal variation in radiation-induced divergence triggers a much larger response by
modulating deep cumulus convection. During the night, when differential cooling
is at a maximum, upper-level divergence over the disturbance and low-level conver-
gence into the disturbance results in a dramatic increase in convection. After sunrise,
absorption of solar radiation in the cloud-free environment and increased subsidence
from the enhanced secondary circulation during the night reduces the mean temper-
ature difference between the disturbance and its environment. The mean circulation
then diminishes and the deep cumulus clouds weaken.
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2.9 Tropical cyclone intensity change

We have seen in section 2.3 that if there is no friction and no diabatic forcing (θ̇ = 0),
Eqs. (2.1) - (2.6) admit steady axisymmetric solutions of the form (0, v(r, z), 0) in
cylindrical coordinates. Axisymmetric vortices intensify as a result of radial inflow
above the boundary layer on account of the conservation of angular momentum. We
have seen in section 2.4 that the presence of surface friction induces radial inflow in
the boundary layer and ascent or descent at the top of the boundary layer. If there is
no diabatic forcing there must be radial outflow above the boundary layer otherwise
friction alone would lead to intensification of the primary vortex. Because the air
above the boundary layer is stably-stratified, the outflow tends to occur in a layer
of limited depth above the boundary layer. It is clear that intensification requires a
mechanism to produce inflow that is strong enough to oppose the outflow induced by
surface friction. The only conceivable mechanism able to do this is diabatic heating
arising from the latent heat release in deep clouds, which produces buoyancy in the
clouds. We consider here a balanced axisymmetric theory for intensity change, i.e.
one in which the flow remains close to hydrostatic and gradient wind balance. In
a later chapter we consider idealized numerical modelling studies of tropical-cyclone
intensification. As a preliminary step we examine the definition of buoyancy and its
generalization for a rapidly-rotating fluid. Later we will examine other aspects of
the buoyancy force.

2.10 The secondary circulation

If the vortex is axisymmetric and in approximate geostrophic and hydrostatic bal-
ance, we can derive an equation for the streamfunction, ψ, of the circulation in a
vertical plane, the so-called secondary circulation. This streamfunction is such that

u = − 1

rρ

∂ψ

∂z
w =

1

rρ

∂ψ

∂r
. (2.25)

which ensures that the continuity equation (2.4), is satisfied. The equation for ψ
follows by differentiating the thermal wind equation in the form (2.16) with respect
to time t and using the azimuthal momentum equation and thermodynamic equation
to eliminate the time derivatives. It is convenient to write the last two equations in
the form

∂v

∂t
+ u(ζ + f) + wS = V̇ (2.26)

and
∂χ

∂t
+ u

∂χ

∂r
+ w

∂χ

∂z
= −χ2θ̇ (2.27)

where ζ = (1/r)(∂(rv)/∂r) is the relative vorticity and we have added a momentum
source term V̇ in the former equation for reasons that will emerge later. The time
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derivative of (2.11) is

g
∂

∂r

∂χ

∂t
+

∂

∂z

(
C

∂χ

∂t
+ χ

∂C

∂t

)
= 0

and substitution of the time derivatives from (2.26) and (2.27) gives

g
∂

∂r

(
u
∂χ

∂r
+ w

∂χ

∂z
−Q

)
+

∂

∂z

[
C

(
u
∂χ

∂r
+ w

∂χ

∂z
−Q

)
+ χξ

(
u(ζ + f) + wS − V̇

)]
= 0

where χ = 1/θ and Q = −χ2θ̇. Then

∂

∂r

[
g
∂χ

∂z
w + g

∂χ

∂r
u

]
+

∂

∂z

[
(χξ(ζ + f) + C

∂χ

∂r
)u +

∂

∂z
(χC)w

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ )

or
∂

∂r

[
g
∂χ

∂z
w − ∂

∂z
(χC)u

]
+

∂

∂z

[
(χξ(ζ + f) + C

∂χ

∂r
)u +

∂

∂z
(χC)w

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ ) (2.28)

using (2.16). Then substitution for u and w from Eqs. (2.25) into Eq. (2.28) gives

∂

∂r

[
g
∂χ

∂z

1

ρr

∂ψ

∂r
+

∂

∂z
(χC)

1

ρr

∂ψ

∂z

]
−

∂

∂z

[(
ξχ(ζ + f) + C

∂χ

∂r

)
1

ρr

∂ψ

∂z
− ∂

∂z
(χC)

1

ρr

∂ψ

∂r

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ )

(2.29)
This is called the Sawyer-Eliassen equation following the work of Eliassen (1951)
and Sawyer (1956) (Sawyer derived a similar equation for frontal circulations in
rectangular geometry). The equation was investigated in context of the tropical
cyclones by Willoughby (1979) and Shapiro and Willoughby (1982). The discriminant
of the Sawyer-Eliassen equation is

D = −g
∂χ

∂z

(
ξχ(ζ + f) + C

∂χ

∂r

)
−

[
∂

∂z
(χC)

]2

(2.30)

Comparison with Eq. (5) of Shapiro and Willoughby (1982) shows that Eq. (2.29)
is elliptic if D > 0.

The Sawyer-Eliassen equation contains three spatially-varying parameters char-
acterizing:
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• the static stability

N2 = −g
∂lnχ

∂z
;

• the inertial stability

I2 =
1

r3

∂M2

∂r
= ξ(ζ + f);

• the baroclinicity

B2 =
1

r3

∂M2

∂z
= ξS.

Shapiro and Willoughby showed solutions of the Sawyer-Eliassen equation for
point sources (i.e. azimuthal rings) of heat and azimuthal momentum, based on the
earlier work of Eliassen (1951). These solutions are reproduced in Fig. 2.6. The flow
through the heat source follows a nearly vertical surface of constant absolute angular
momentum, while that for a momentum source follows a nearly horizontal isentropic
surface. For sources of heat and absolute angular momentum, the sense of the flow
is upward and outward, respectively. For sinks the flow is reversed. The vortex axis
lies to the left of the figure. In the warm-core system of panels (c) and (f), the warm
anomaly that supports the slope of the constant absolute angular momentum and
isentropic surfaces increases towards the upper left.

Shapiro and Willoughby used the Sawyer-Eliassen equation also to calculate the
secondary circulation induced by point sources of heat and absolute angular momen-
tum in balanced, tropical-cyclone-like vortices in a partially bounded domain using
the so-called method of images. Again they found that the secondary circulation
through a heat source is primarily vertical, and that through a momentum source is
primarily horizontal as shown in Fig. 2.7. The streamlines form two counter-rotating
cells of circulation (or gyres) that extend outside the source. There is a strong flow
between these gyres and a weaker return flow on the outside. The flow emerges from
the source, spreads outward through a large volume surrounding it, and converges
back into it from below. Thus, compensating subsidence surrounds heat-induced up-
draughts and compensating inflow lies above and below momentum-induced outflow.
The horizontal scale of the gyres is just the local Rossby radius of deformation, so
that the ratio of horizontal to vertical scale is N/I.

Radial gradients of absolute angular momentum of the primary circulation affect
the radial scale of the dipoles just as the static stability affects their vertical scale.
For a fixed static stability, the gyres tend to be elongated vertically when the inertial-
stability parameter I2 is large and elongated horizontally when I2 is small. Vertical
gradients of absolute angular momentum associated with the vertical shear of the
primary circulation tilt the updraught through a heat source because the path of
least resistance for the rising air lies along surfaces of constant absolute angular
momentum. Likewise, horizontal temperature gradients associated with the vertical
shear deflect the flow through momentum sources from the horizontal because the
path of least resistance in this case lies along isentropic surfaces. Although the flow
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Figure 2.6: Streamfunction responses to point sources of: (a) Heat in a barotropic
vortex with weak inertial stability, (b) heat in a barotropic vortex with strong inertial
stability, (c) heat in a baroclinic vortex, (d) momentum in a barotropic vortex with
weak inertial stability, (e) momentum in a barotropic vortex with strong inertial
stability, and (f) momentum in a baroclinic vortex. (Based on Figs. 8, 9, 11, and 12
of Eliassen, (1951).)

associated with a heat (momentum) source lies generally along the M -surface (θ-
surface), it does have a small component across this surface. It is the advection by
this component that causes evolution of the primary circulation. It can be shown
that the swirling flow remains in approximate gradient-wind balance provided the
time scale of the forcing is longer than the orbital period of the primary circulation
about the vortex centre.

It turns out that the induced secondary circulation in balanced flows tend to
cancel the direct effect of forcing. For example, the work done by expansion in the
updraught induced by a heat source nearly balances the actual heating so that the
increase in temperature is relatively small. Similarly, a momentum source produces
outflow that advects compensating low values of absolute angular momentum from
the central region of the vortex.

In section 2.15 we show how the Sawyer-Eliassen equation can be used as one of
a set of equations to calculate the evolution of a balanced vortex.
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Figure 2.7: Secondary circulation induced in a balanced vortex by (a) a heat source
and (b) a cyclonic momentum source showing the distortion induced by variation
in inertial stability, I2 and thermodynamic stability. N2, and baroclinicity S2. The
strong motions through the source follow lines of constant angular momentum for a
heat source and of constant potential temperature for a momentum source. From
Willoughby (1995).

2.10.1 Ertel PV and the discriminant

I show now that D is proportional to the Ertel potential vorticity defined as

P =
(ω + f) · ∇θ

ρ
.

For a symmetric vortex with tangential wind speed distribution v(r, z), ω + f =
−(∂v/∂z)r̂ + (ζ + f)ẑ and ∇θ = −(1/χ2)∇χ = −(1/χ2)[(∂χ/∂r)r̂ + (∂χ/∂z)ẑ] so
that

P =
1

ρχ2

[
∂v

∂z

∂χ

∂r
− (ζ + f)

∂χ

∂z

]

Then

gρχ3ξP = −g
∂χ

∂z
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Finally

gρχ3ξP = −g
∂χ

∂z

[
χξ(ζ + f) + C

∂χ

∂r

]
−

(
∂

∂z
(Cχ)

)2

i.e.
gρχ3ξP = D (2.31)
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2.10.2 The forcing term for ψ in terms of generalized buoy-
ancy

Consider the forcing term for Eq. (2.30). The term can be written:

F = −g
∂

∂r

(
1

θ2

dθ

dt

)
− ∂

∂z

(
C

1

θ2

dθ

dt

)

The generalized buoyancy (Eq. 2.78) is be = ge(θ − θe)/θe, where ge = (C, 0,−g).
With the anelastic approximation that 1/θ ≈ 1/θe ≈ 1/Θ, where Θ is some vertically
averaged value of θe we have that

dbe

dt
≈ 1

Θ

dθ

dt
ge

Now

θ̂ · ∇ ∧ dbe

dt
=

∂

∂r

(
dbez

dt

)
− ∂

∂z

(
dber

dt

)
≈ ∂

∂r

(
g

Θ

dθ

dt

)
− ∂

∂z

(
C

Θ

dθ

dt

)

so that

F ≈ 1

Θ
θ̂.∇∧ dbe

dt
(2.32)

2.10.3 The Sawyer-Eliassen equation and toroidal vorticity
equation

The Sawyer-Eliassen equation is an approximate form of the local time derivative of
equation for the toroidal vorticity η = ∂u/∂z − ∂w/∂r. Assuming the most general
form of the continuity equation

∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0

the toroidal vorticity equation may be written as

r
D

Dt

(
η

rρ

)
=

1

ρ

∂C

∂z
+

1

ρ2χ

(
∂χ

∂z

∂p

∂r
− ∂χ

∂r

∂p

∂z

)
(2.33)

where D/Dt ≡ ∂/∂t + u · ∇ and η/(rρ) is a ’potential toroidal vorticity’, where
the analogous ‘depth’ is ‘r’, the radius of a toroidal vortex ring (see appendix). If
thermal wind balance exists, the right-hand-side of (2.36) may be written as

1

ρχ

(
g
∂χ

∂r
+

∂

∂z
(Cχ)

)
.

Then the time derivative of (4.41) is

∂

∂t

[
r

D

Dt

(
η

rρ

)]
=

∂

∂t

[
1

ρχ

(
g
∂χ

∂r
+

∂

∂z
(Cχ)

)]
(2.34)

The right-hand-side of (2.34) gives the Sawyer-Eliassen equation when the thermal
wind equation (2.11) is satisfied for all time. Then consistency requires that the
left-hand-side is identically zero.
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2.10.4 Buoyancy relative to a balanced vortex

Tropical cyclones are rapidly-rotating warm-cored vortices and the warm core is
therefore positively buoyant relative to the environment. However, we have seen that
on the cyclone scale, hydrostatic and gradient-wind balance exist to a good approxi-
mation and the radial density (or buoyancy) gradient is related by the thermal-wind
equation to the decay in the mean tangential circulation and density with height.
Clearly much of the radial gradient of buoyancy force cannot be thought of as being
“available” for “driving” a secondary (or toroidal) circulation of the vortex that is
necessary for vortex amplification. Nevertheless, hydrostatic balance may be a poor
approximation in individual convective clouds and a pertinent question is whether
these clouds have significant local (unbalanced) buoyancy, which in turn might play
an important role in the dynamics of storm intensification. This important question
was addressed by Braun (2002), who answered it in the affirmative on the basis of his
simulations of Hurricane Bob (1991). To address this question it is necessary to de-
fine the perturbation pressure and perturbation density relative to some vortex-scale
pressure and density distributions. The simplest case is when the primary vortex is
approximately steady and axisymmetric. Then we may take reference distributions
pref (r, z) and ρref (r, z), respectively, that are in thermal wind balance with the tan-
gential flow field v(r, z). We saw how to do this in section 2.3 using the method of
characteristics. We may use ρref (r, z) and pref (r, z) as alternative reference quan-
tities to define the buoyancy force in Eq. (2.18) (similar to Braun 2002), without
affecting the derivation of this equation. We denote the generalized buoyancy force
so calculated by bB. It follows that bB ≡ 0 in the axisymmetric balanced state,
whereas, if the reference pressure and density at r = R are used, b equals some
nonzero function b0(r, z). Clearly, the partition of force between perturbation pres-
sure gradient and buoyancy will be different for the reference state characterized by
ρ0(r, z) and p0(r, z) and interpretations of the dynamics will be different also, albeit
equivalent to those using the more conventional reference quantities that depend on
height only.

In the more general case, when the vortex structure has marked asymmetries
and/or is evolving in time, it is necessary to allow for the azimuthal and/or time
variations of the reference state as was done by Zhang et al. (2000) and Braun
(2002).

2.10.5 Buoyancy in axisymmetric balanced vortices

Axisymmetric balanced models of tropical cyclone intensification (e.g. Ooyama,
1969) appear to capture many important observed features of tropical cyclone behav-
iour. However, in an axisymmetric model that assumes exact thermal wind balance,
bB(r, z, t)≡ 0 and the corresponding ∂p′/∂z ≡ 0, even though there may be heat
sources or sinks present that generate buoyancy b. It is clear from the foregoing dis-
cussion that any diabatic heating or cooling in such models is incorporated directly
into the balanced state, changing b(r, z, t), while bB(r, z, t) remains identically zero
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by definition. Obviously, nonzero values of bB relate to unbalanced motions provided
that the appropriate reference state as defined above has been selected for the defini-
tion of buoyancy at any given time. It may be helpful to think of b as characterizing
the system buoyancy and bB as characterizing the local buoyancy.

2.11 Origins of buoyancy in tropical cyclones

Tropical cyclones intensify when, as a direct or indirect result of latent heat release,
the buoyancy b in the core increases. To a first approximation, the direct effect of
latent heat release in saturated ascending air, such as in the eyewall clouds, or in the
cores of individual convective clouds, is to maintain the air close to the moist adiabat
from which the updraught originates. The indirect effect of latent heat release is to
produce subsidence (or at least reduce the rate-of-ascent) in clear-air regions adja-
cent to (i.e. within a local Rossby radius of deformation of) deep convection. There
is observational evidence (e.g. Betts, 1986; Xu and Emanuel, 1992) and evidence
from model studies (Bretherton and Smolarkewicz, 1989) that, again to a first ap-
proximation, the clear air properties are adjusted towards the same saturation moist
adiabat as in the neighbouring convective cores, albeit in this case to one calculated
reversibly. In either case, the thermal structure of the troposphere in a mature trop-
ical cyclone, and thereby the radial distribution of buoyancy, would be determined
largely by the radial distribution of moist entropy at the top of the subcloud layer,
at least in regions of ascent (see e.g. Emanuel, 1991). This view relates essentially
to the generation of system buoyancy.

The extent to which local (unbalanced) buoyancy is produced will depend amongst
other things on the rate at which the buoyancy is generated and the scale on which
it is generated. For example, the simulations by Braun (2002) indicate that much
of the eyewall updraft mass flux occurs within small-scale updrafts that are locally
buoyant relative to the broad-scale thermal field of the vortex. A recent examina-
tion of the high resolution cloud resolving numerical simulation of the formation of
Hurricane Diana (1984) has shown how buoyant cores growing in the rotation-rich
environment of an incipient storm produce intense cyclonic vorticity anomalies in
the lower troposphere by vortex-tube stretching (Hendricks, et al. 2003). These
intense vorticity anomalies subsequently merge and axisymmetrize to intensify the
balanced circulation of the incipient mesoscale vortex (Montgomery and Enagonio
1998; Möller and Montgomery 2000; Montgomery and Brunet 2002). In this case,
subsidence warming is not the primary means for generating the cyclone’s warm
core. Rather, the warm core temperature that materializes within the developing
mesoscale vortex results from the tendency of the high vorticity cores of the buoyant
plumes to ‘trap’ the heat releases by the condensation process, as one might antici-
pate from local Rossby adjustment considerations (Schubert et al. 1980, Sec. 9) and
quasi-balanced dynamics within enhanced vortical regions (Schubert and Hack 1982,
Montgomery et al. 2003).
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2.12 A balanced theory of vortex evolution

The establishment of the Sawyer-Eliassen equation is an important step in formulat-
ing a balanced theory for the evolution of an axisymmetric vortex. In such a theory
we need prognostic equations for the evolution of the primary circulation, i.e. for the
azimuthal wind and potential temperature. These are just the axisymmetric forms
of Eqs. (2.2) and (2.5), i.e. Eqs. (2.26) and (2.27). Given expressions for V̇ and θ̇
and initial conditions for v and θ, we can solve the Sawyer-Eliassen equation for the
streamfunction of the secondary circulation, ψ, given suitable boundary conditions
on this quantity. This streamfunction gives the secondary circulation that keeps v
and θ in thermal-wind balance for short time interval, ∆t. The corresponding ra-
dial and vertical wind components may be obtained from the expressions (2.25) and
the density therein can be obtained, in principle, from (2.14). A balanced set of
equations of this type was solved by Sundqvist (1970).

2.13 Appendix to Chapter 2

2.13.1 The toroidal vorticity equation

The λ-component of vorticity, or toroidal vorticity is

η =
∂u

∂z
− ∂w

∂r
(2.35)

The equation for η is derived as follows. Consider

∂η

∂t
=

∂

∂t

(
∂u

∂z
− ∂w

∂r

)
=

∂

∂z

(
∂u

∂t

)
− ∂

∂r

(
∂w

∂t

)

This expression may be written

∂η

∂t
=

∂

∂z

(
−u · ∇u + C − 1

ρ

∂p

∂r
+ Fu

)
− ∂

∂r

(
−u · ∇w − 1

ρ

∂p

∂z
+ Fw

)
,

where, for completeness frictional stresses Fu, Fw, are included in the momentum
equations. This equation reduces to

∂η

∂t
=

∂C

∂z
+

∂

∂r

(
1

ρ

)
∂p

∂z
− ∂

∂z

(
1

ρ

)
∂p

∂r
+

∂

∂r
(u · ∇w)− ∂

∂z
(u · ∇u) +

∂Fu

∂z
− ∂Fw

∂r
,

or

∂η

∂t
+ u · ∇η =

∂C

∂z
+

1

ρ2

(
∂ρ

∂z

∂p

∂r
− ∂ρ

∂r

∂p

∂z

)
+

∂u

∂r
· ∇w − ∂u

∂z
· ∇u +

∂Fu

∂z
− ∂Fw

∂r
.

Now
ln θ = κ ln p∗ − (1− κ) ln p− ln ρ = − ln χ
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so that

(1− κ)
dp

p
+

dρ

ρ
=

dχ

χ

Then
1

ρ2

(
∂ρ

∂z

∂p

∂r
− ∂ρ
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∂z

)
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1
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∂z

)

Again
∂u
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· ∇w − ∂u

∂z
· ∇u =

(
∂u

∂r
+

∂w

∂z
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∂w

∂r
− ∂u

∂z

)
,

but the continuity equation now gives

∂u
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+
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∂z
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r
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∂t
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∂ρ

∂r
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)
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r
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D

Dt

(
1

ρ

)
,

where D/Dt ≡ ∂/∂t + u · ∇. Thus the toroidal vorticity equation is

∂η
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+ u · ∇η =
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∂r

)
, (2.36)



Chapter 3

A SIMPLE BOUNDARY LAYER
MODEL

3.1 The boundary layer equations

We consider now a simple model for the tropical cyclone boundary layer as described
by Smith (2003). The boundary layer equations for a steady axisymmetric vortex in
a homogeneous fluid on an f -plane are:

1

r

∂

∂r
(ru2) +

∂

∂z
(uw) +

v2
gr − v2

r
+ f(vgr − v) =

∂

∂z

(
K

∂u

∂z

)
, (3.1)

1

r2

∂

∂r
(r2uv) +

∂

∂z
(vw) + fu =

∂

∂z

(
K

∂v

∂z

)
, (3.2)

1

r

∂

∂r
(ruϕ) +

∂

∂z
(wϕ) =

∂

∂z

(
K

∂ϕ

∂z

)
, (3.3)

∂

∂r
(ru) +

∂

∂z
(rw) = 0, (3.4)

where (u, v, w) is again the velocity vector in a stationary cylindrical coordinate
system (r, φ, z), vgr(r) is the tangential wind speed at the top of the boundary layer,
ϕ is a scalar quantity, taken here to be the dry static energy or the specific humidity,
and K is an eddy diffusivity, which we assume here to be the same for momentum,
heat and moisture. Let us assume that condensation does not occur in the boundary
layer: we can check that saturation does not arise in the calculations. Taking the
integral of Eqs. (3.1) - (3.4) with respect to z from z = 0 to the top of the boundary
layer, z = δ, and assuming that δ is a constant, we obtain:

d

dr
(r

∫ δ

0

u2dz)+[ruw]|z=δ+

∫ δ

0

(v2
gr−v2)dz+rf

∫ δ

0

(vgr−v)dz = −Kr
∂u

∂z

∣∣∣∣
z=0

, (3.5)
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d

dr
(r2

∫ δ

0

uvdz) + [r2vw]
∣∣
z=δ

+ fr2

∫ δ

0

udz = −Kr2 ∂v

∂z

∣∣∣∣
z=0

, (3.6)

d

dr
(r

∫ δ

0

uϕdz) + [rwϕ]|z=δ = −Kr
∂ϕ

∂z

∣∣∣∣
z=0

, (3.7)

d

dr

∫ δ

0

rudz + [rw]|z=δ = 0. (3.8)

Now
[ruw]z=δ = rubwδ+ + rugrwδ− ,

where ugr is the radial component of flow above the boundary layer, taken here to
be zero, wδ+ = 1

2
(wδ + |wδ|), and wδ− = 1

2
(wδ − |wδ|). Note that wδ+ is equal to wδ

if the latter is positive and zero otherwise, while wδ− is equal to wδ if the latter is
negative and zero otherwise. The assumption that δ is a constant may have to be
reassessed later, but allowing it to vary with radius precludes the relatively simple
approach that follows. A bulk drag law is assumed to apply at the surface:

K
∂u

∂z

∣∣∣∣
z=0

= CD|ub|ub,

where CD is a drag coefficient and ub = (ub, vb). Here ub and vb denote the values
of u and v in the boundary layer, which are assumed to be independent of depth. A
similar law is taken for ϕ:

K
∂ϕ

∂z

∣∣∣∣
z=0

= Cϕ|ub|(ϕb − ϕs),

where ϕb and ϕs are the values of ϕ in the boundary layer and at the sea surface,
respectively. In the case of temperature ϕs is the sea surface temperature and in the
case of moisture it is the saturation specific humidity at this temperature. Following
Shapiro (1983, p1987) we use the formula CD = CD0 + CD1|ub|, where CD0 =
1.1 × 10−3 and CD1 = 4 × 10−5. Further, we assume here that Cϕ = CD, although
there is mounting evidence that they are not the same and that neither continue to
increase linearly with wind speed at speeds in excess of, perhaps, 25 m s−1 (Emanuel,
1995b).

Carrying out the integrals in Eqs. (3.5) - (3.8) and dividing by δ gives

d

dr
(ru2

b) = −wδ+

δ
rub − (v2

gr − v2
b )− rf(vgr − vb)− CD

δ
r(u2

b + v2
b )

1/2ub, (3.9)

d

dr
(rubrvb) = −r

wδ+

δ
rvb − r

wδ−
δ

rvgr − r2fub − CD

δ
r2(u2

b + v2
b )

1/2vb, (3.10)
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d

dr
(rubϕb) = −wδ+

δ
rϕb − r

wδ−
δ

ϕδ+ +
Cϕ

δ
r(u2

b + v2
b )

1/2(ϕs − ϕb), (3.11)

and

d

dr
(rub) = −r

wδ

δ
, (3.12)

which may be written
dub

dr
= −wδ

δ
− ub

r
. (3.13)

Moreover, for any dependent variable η

d

dr
(rubη) = rub

dη

dr
+ η

d

dr
(rub) = rub

dη

dr
− wδ

δ
rη,

where η is either ub, vb or ϕb. Then Eqs. (3.9) and (3.10) become

ub
dub

dr
= ub

wδ−

δ
− (v2

gr − v2
b )

r
− f(vgr − vb)− CD

δ
(u2

b + v2
b )

1/2ub, (3.14)

ub
dvb

dr
=

wδ−

δ
(vb − vgr)− (

vb

r
+ f)ub − CD

δ
(u2

b + v2
b )

1/2vb. (3.15)

Equation (3.11) becomes

ub
dϕb

dr
=

wδ−

δ
(ϕb − ϕδ+) +

Cϕ

δ
(u2

b + v2
b )

1/2(ϕs − ϕb)−Rb, (3.16)

where ϕδ+ is the value of ϕ just above the boundary layer. The term −Rb is added
to the equation when ϕ is the dry static energy and represents the effects of radiative
cooling, respectively.

Equations (3.14) - (3.16) form a system that may be integrated radially inward
from some large radius R to find ub, vb, ϕb and wδ as functions of r, given values of
these quantities at r = R. First Eq. (3.14) must be modified using (3.13) to give an
expression for wδ. Combining1 these two equations gives

wδ =
δ

1 + α

[
1

ub

{
(v2

gr − v2
b )

r
+ f(vgr − vb) +

CD

δ
(u2

b + v2
b )

1/2ub

}
− ub

r

]
, (3.17)

where α is zero if the expression in square brackets is negative and unity if it is
positive.

1Eq. (3.14) is written in the form

ub
wδ−

δ
= ub

dub

dr
+ {...} and

dub

dr

is eliminated from this expression using (3.13). Note that if wδ < 0, wδ = wδ− , in which case α = 1.
If wδ > 0, wδ− = 0, in which case α = 0.
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3.2 Shallow convection

An important feature of the convective boundary layer (CBL) over the tropical oceans
in regions of large-scale subsidence is the near ubiquity of shallow convection. Such
regions include the outer region of hurricanes. Shallow convection plays an important
role in the exchange of heat and moisture between the subcloud layer, the layer
modelled in this paper, and the cloudy layer above. Excellent reviews of the CBL
structure are given by Emanuel (1994, Chapter 13) and Betts (1997). Over much of
the tropical Pacific Ocean, for example, in regions of subsidence, the subcloud layer
is typically 500 m deep and is well-mixed, with relatively uniform vertical profiles
of potential temperature, specific humidity and dry or moist static energy. The
cloudy layer is capped by an inversion at an altitude of about 800 mb. A similar
structure was found in the outer region of Hurricane Eloise (1975) by Moss and
Merceret (1976), the mixed layer depth being about 650 m in this case. The clouds,
known as tradewind cumuli, are widely spaced and have their roots in the subcloud
layer. They generally don’t precipitate, but evaporate into the dry subsiding air that
penetrates the inversion, thereby moistening and cooling the subcloud layer. In turn,
the compensating subsidence in the environment of clouds transports potentially
warm and dry air into the subcloud layer. This drying opposes the moistening of the
subcloud layer by surface fluxes, keeping its relative humidity at values around 80
%. The equilibrium state of the CBL, including its depth and that of the subcloud
layer, is governed primarily by radiative cooling, subsidence, convective transports,
and surface latent and sensible heat fluxes (Emanuel, op. cit., Betts, op. cit.).
Modelling the subcloud layer requires a knowledge of the cloud-base mass flux, which
together with the large-scale subsidence, determines the rate at which cloud layer air
enters the subcloud layer. Emanuel (1989) used a simple cloud model to determine
the mass flux of shallow convection, while Zhu and Smith (2002) use the closure
scheme of Arakawa (1969), in which the mass flux is assumed to be proportional
to the degree of convective instability between the subcloud layer and that above.
As we do not predict the thermodynamic variables represented by ϕδ+ above the
boundary layer in this simple model, we simply choose a constant value for the mass
flux of shallow convection, wsc, and add this to wδ− in Eqs. (3.14) - (3.16) (even if
wδ− = 0). However, wδ in Eq. (3.9) is left unchanged as shallow convection does
not cause a net exchange of mass between the cloud and subcloud layers. The value
for wsc is chosen to ensure that the thermodynamic profile at large radius is close to
radiative-convective equilibrium (see section 5).

3.3 Starting conditions at large radius

We assume that the flow above the boundary layer is in approximate geostrophic
balance at large radii where the boundary layer is essentially governed by Ekman-
like dynamics. Specifically we assume that at r = R, far from the axis of rotation, the
flow above the boundary layer is steady and in geostrophic balance with tangential
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wind vgr(R). In addition we take CD to be a constant equal to CD0 + CD1vgr(R)2.
Then ub and vb satisfy the equations:

f(vgr − vb) = −CD

δ
(u2

b + v2
b )

1/2ub, (3.18)

fub = −CD

δ
(u2

b + v2
b )

1/2vb. (3.19)

Let (ub, vb) = vgr(u
′, v′) and Λ = fδ/(CDvgr). Then equations (3.18) and (3.19)

become

Λ(1− v′) = −(u′2 + v′2)1/2u′, (3.20)

and
Λu′ = −(u′2 + v′2)1/2y. (3.21)

The last two equations have the solution

v′ = −1

2
Λ2 + (

1

4
Λ4 + Λ2)1/2. (3.22)

and
u′ = −[(1− v′)v′]1/2, (3.23)

whereupon ub and vb follow immediately on multiplication by vgr. The vertical
velocity at r = R can be diagnosed in terms of vgr and its radial derivative using the
continuity equation (10.33).

The starting values for the temperature Tb and specific humidity qb in the bound-
ary layer are 25◦C and 15 g kg−1, respectively, giving a relative humidity of 72%.
The value for qb is the same as the mixed layer value observed by Moss and Merceret
(1976, Fig 4), but Tb cannot be compared with their observations as they showed
only potential temperature.

With the starting values for ub and vb determined by Eqs. (3.22) and (3.23), Eqs.
(3.14) - (3.16) may be solved numerically, given the radial profile vgr. We choose
R = 500 km. Radial profiles of selected dynamical quantities in the boundary layer
and at the top of it are shown in Fig. 3.1 for this calculation. At large radii (r > 350
km), the mean vertical motion at the top of the boundary layer, wδ, is downward and
the total wind speed |vb| =

√
u2

b + v2
b is less than that at the top of the boundary

layer, vgr. As r decreases, both ub and vb increase in magnitude, as does vgr, the
maximum value of vb occurring just inside the radius of maximum tangential wind
speed (RMW) above the boundary layer. As a result, the frictional force, F =
Cd|vb|vb/δ increases, and in particular its radial component, Fr, denoted by fri in
the top right panel of Fig 3.1. The net radially-inward pressure gradient force per
unit mass, (v2

gr − v2
b )/r + f(vgr − vb), denoted by pgf , increases also with decreasing

2It is possible to take CD0 + CD1|ub(R)| and solve the equations for ub and vb numerically, but
the result is essentially no difference from basing CD on vgr
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Figure 3.1: Radial profiles of selected dynamical quantities in the boundary layer
calculation: (top left) tangential and radial components of wind speed in the bound-
ary layer (ub, vb), total wind speed in the boundary layer, vv, and tangential wind
speed above the boundary layer (vgr - the unmarked solid line) [Units m s−1]; (top,
right) radial pressure gradient force (pgf) and frictional force (fri) per unit mass in
the boundary layer, together with the force associated with the downward flux of
radial momentum through the top of the boundary layer (wu) [Units 1.0 × 10−3 m
s−2] and the sum of these three forces (solid line); (bottom left) vertical velocity at
the top of the boundary layer, wδ [Units cm s−1]; (bottom right) absolute angular
momentum above the boundary layer (solid line) and in the boundary layer (amb)
[Units 1.0× 107 m2 s−2].
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r, at least for large r, but more rapidly than the frictional force. The reason is
that columns of fluid partially conserve their absolute angular momentum as they
converge in the boundary layer and despite some frictional loss to the surface, their
rotation rate increases. The increase in vb is assisted by the downward transfer of
tangential momentum from above, represented by the term (wδ−+wsc)(vb−vgr)/δ in
Eq. (3.15), although this effect turns out to be very small. The downward transfer
of (zero) radial momentum, represented by the term (wδ− + wsc)ub/δ in Eq. (3.14),
is denoted by wu in Fig. 3.1, but this also makes a negligible contribution to the
force balance in the boundary layer. For the typical tangential wind profile used,
vb increases faster than vgr as r decreases inside a radius of about 200 km. In this
region, pgf decreases faster than wu + fri so that eventually the net radial force
pgf − wu− fri changes sign. This change occurs well before the RMW is reached.
When pgf−wu−fri becomes positive, the radial inflow decelerates, but vb continues
to increase as columns of air continue to move inwards. Eventually, vb asymptotes
to vgr and pgf tends to zero, but at no point does the tangential wind speed become
supergradient. Nevertheless, as pgf tends to zero, the net outward force, primarily
due to friction, becomes relatively large and the inflow decelerates very rapidly.
The mean vertical velocity at the top of the boundary layer increases steadily with
decreasing r and reaches a maximum very close to the RMW: thereafter it decreases
rapidly.

The lower right panel of Fig. 3.1 shows how the absolute angular momentum
in the boundary layer decreases with decreasing radius as a result of the surface
frictional torque. However, the rate of decrease is less rapid than that above the
boundary layer and value in the boundary layer asymptotes to the value above the
layer at inner radii.

It turns out that, except for a short adjustment length, which decreases in radial
extent with increasing R, the calculations are relatively insensitive to the choice of
R (see Smith, 2003). This insensitivity to R is not true of the thermodynamic fields
as discussed below.

3.4 Thermodynamic aspects

The left panel of Fig. 3.2 shows the radial profiles of boundary layer temperature,
specific humidity and saturation specific humidity, together with the saturation spe-
cific humidity at the sea surface temperature (qss), while the right panel shows the
fluxes of sensible and latent heat at the surface and through the top of the boundary
layer. At large radii, the wind speed is comparatively light and the boundary layer is
in approximate3 radiative-convective equilibrium. In particular, the air temperature
just above the sea surface is only slightly lower than the sea surface temperature;

3The radiative-convective state is very sensitive to the choice of parameters including the mass
flux of shallow convection and the boundary layer depth. We choose rounded numbers for these
quantities so that the boundary layer is close to, but not exactly in equilibrium.
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Figure 3.2: Radial profiles of selected thermodynamic quantities in the control calcu-
lation: (left panel) boundary layer temperature (Tb, unit deg. C), specific humidity
(qb), saturation specific humidity (qsb), and the saturation specific humidity at the
sea surface (qss) [Units gm kg−1]; (right panel) latent heat fluxes from the sea surface
(lh) and through the top of the boundary layer (lht)), and corresponding sensible
heat fluxes (the two curves just above the abscissa labelled ”sh” and ”sht”) [Units
W m−2].

the net sensible heat fluxes from the sea and through the top of the boundary layer
approximately balance the radiative cooling; and the moistening of the boundary
layer by the surface flux approximately balances the drying brought about by subsi-
dence associated with shallow convection. The mass flux of shallow convection and
the boundary layer depth are chosen to ensure this balance.

As r decreases and the surface wind speed increases, the surface moisture flux
increases and the boundary layer progressively moistens. The increase in moisture
contrast between the boundary layer and the air aloft leads to an increase in the flux
of dry air through the top of the subcloud layer, which reduces the rate of moisten-
ing. This effect would be reduced in a more complete model in which the moisture
content above the boundary layer is predicted. If shallow convection and radiative
cooling are omitted, the rate of moistening is relatively rapid and the boundary layer
saturates (i.e. qb = qs at a relatively large radius (453 km), although, of course,
then the boundary layer is not in radiative-convective equilibrium at r = R. In the
present case, saturation occurs at a radius of about 80 km, but the air just above
the sea surface does not (i.e. qb < qss), which in terms of the simple model could
be interpreted to mean that the boundary layer becomes topped by low cloud. A
further consequence is that the surface moisture fluxes do not shut off. We have not
allowed for the latent heat release in the inner core in these calculations as the degree
of supersaturation is only about 1% (see Smith, 2003, Fig. 11). The degree of mois-
ture disequilibrium at the sea surface is maintained by the fact that the saturation
specific humidity increases as the surface pressure decreases. The latent heat fluxes
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are much larger than the sensible heat fluxes.



Chapter 4

THE EMANUEL STEADY
STATE HURRICANE MODEL

The basis of Emanuel’s steady-state model for a tropical cyclone, described by
Emanuel (1986), is Fig. 2.3. It is convenient to divide the domain into three re-
gions as shown in Fig. 4.1. Regions I and II encompass the eye and eyewall regions,
respectively, while Region III refers to that beyond the eyewall clouds. Region II
is where the upward mass flux at the top of the boundary layer is large compared
with the mass fluxes associated with shallow convection and precipitation-driven
downdrafts. Smith (2003, p1013) estimated a value for wsc for shallow convection
(defined in section 2.9.1) of about 2 cm s−1, based on the radiative equilibrium of
the boundary layer at some large radius. In the boundary layer calculation shown in
Fig. 3.1, w > 5wsc for r < 2rm, where rm is the radius of maximum tangential wind
speed above the boundary layer. By comparison, Emanuel op. cit. takes the outer
radius of Region II to be rm on the basis that precipitation-driven downdrafts may
be important up to this radius.

In pressure coordinates, the gradient wind equation and hydrostatic equation may
be written as:

g

(
∂z

∂r

)

p

=
M2

r3
− 1

4
rf 2 (4.1)

and

g

(
∂z

∂p

)

r

= −α, (4.2)

where α = 1/ρ is the specific volume. Eliminating the geopotential height of the
pressure surface, gz, gives an alternative form of the thermal wind equation:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂r

)

p

. (4.3)

At this point it is convenient to introduce the saturation moist entropy, s∗, defined
by:

s∗ = cp ln θe
∗, (4.4)

62



CHAPTER 4. THE EMANUEL STEADY STATE HURRICANE MODEL 63

Figure 4.1: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. The absolute angular momentum per
unit mass, M , and equivalent potential temperature, θe of an air parcel are conserved
after the parcel leaves the boundary layer and ascends in the eyewall clouds. The
precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

which is a state variable. Therefore we can regard α as a function of p and s∗ and
with a little manipulation we can express the thermal wind equation as:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂s∗
)

p

(
∂s∗

∂r

)

p

. (4.5)

I will show in an Appendix to this chapter that

(
∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
, (4.6)

whereupon Eq. (4.5) becomes

1
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)
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= −
(
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∂p

)

s∗

(
∂s∗

∂r

)

p

. (4.7)

With the assumption that M and s∗ surfaces coincide, i.e. M = M(s∗), Eq. (4.7)
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becomes
2M
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(
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)

r

= −
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s∗

ds∗

dM

(
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∂r

)

p

. (4.8)

Note that (∂T/∂p)s∗ is just the temperature lapse rate as a function of pressure along
a moist adiabat. Now along an M surface,

(
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∂r

)

p

δr +

(
∂M

∂p

)

r

δp = 0, (4.9)

so that the slope of an M surface in (r, p) space is
(

dr
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)
= −
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/

(
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)

p

. (4.10)

Using Eq. (4.10), the thermal wind equation (Eq. 4.8) gives

1

2

(
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M

= − 1
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s∗

ds∗

dM
, (4.11)

which may be integrated upwards along the M (or s∗) surface to give

1

r2
|M − 1

r2
out

|M = − 1

M

ds∗

dM
[T − Tout(s

∗, pout)], (4.12)

where Tout is the outflow temperature along the M (or s∗) surface at some large
radius rout. If we assume that the air in the boundary layer and, in particular at the
top of this layer z = h, is a constant1, TB, and that r << rout, then

−r2 ds∗

dM
[TB − Tout(s

∗, pout)] = M, at z = h, (4.13)

or, alternatively,

−[TB − Tout(s
∗, pout)]

∂s∗

∂r
=

1

2r2

∂M2

∂r
, at z = h. (4.14)

This equation is a vertically-integrated (along an M -, or s∗-surface) form of the
thermal wind equation.

Using the Exner function, π, instead of pressure, the gradient wind equation (Eq.
4.1) takes the form

M2 = r3

[
cpTB

∂ ln π

∂r
+

1

4
rf 2

]
, (4.15)

whereupon Eq. (4.14) can be written
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2
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∂ ln π

∂r

)
+

1

2

rf 2

cpTB

, at z = h, (4.16)

1According to the boundary layer model described in section 2.9, this is not a bad assumption
if the sea surface temperature is uniform.
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where it is assumed that θ∗e = θe at the top of the boundary layer.
Equation (4.16) may be integrated with respect to radius from r to some value

ro giving

− ln θeo + ln θe +
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We define

T̄out =
1

ln(θ∗e/θeo)

∫ ln θ∗e

ln θeo

Toutd ln θ∗e , (4.18)

which is average outflow temperature weighted with the saturation moist entropy of
the outflow angular momentum surfaces. Remember that θ∗e along angular momen-
tum surfaces is taken equal to θe where the surfaces meet the top of the boundary
layer. Then (4.14) gives
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o − r2) at z = h. (4.19)

This relationship between the radial pressure distributions p(r) and θe, which is valid
at all radii where M - and s∗-surfaces coincide, exerts a powerful constraint on the
structure of the mature steady axisymmetric tropical cyclone and is at the heart of
the steady-state hurricane model developed by Emanuel (1986).

To complete the model we derive a second relationship between p(r) and θe.
Different expressions will be obtained for Regions II and III.

4.1 Region II

In Region II we consider the dynamics and thermodynamics of the boundary layer,
which imposes a further constraint on the steady solution as it determines the radial
distribution of both M and θe exiting the top of the layer. Referring to Section 3, it
is possible to define a streamfunction ψ for the flow in the boundary layer, given by:

ρrub = −∂ψ

∂z
, ρrwb =

∂ψ

∂r
(4.20)

Then

ub = −ψ(r, h)

ρrh
, wb =

1

ρr

∂ψ

∂r
(4.21)

Let ϕb be the absolute angular momentum M or the moist entropy, s. Then ϕb

satisfies

ψ(r, h)
dϕb

dr
− rwh[ϕh − ϕb] = −r

ρ
τϕ(r, 0) (4.22)
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where τϕ is the surface flux of ϕ. If the flow is out of the boundary layer, (w > 0),
then ϕh = ϕb and neglecting shallow convection (see subsection 2.8.1), ϕb satisfies

ψ(r, h)
dϕb

dr
= −r

ρ
τϕ(r, 0) (4.23)

whereas if it is into the boundary layer (w < 0),

ψ(r, h)
dϕb

dr
= −r

ρ
τϕ(r, 0) + rwh[ϕh − ϕb] (4.24)

Then in Region II in Fig. 4.1, where the flow is out of the boundary layer and where
convective downdrafts may be neglected,

∂s

∂M

∣∣∣∣
z = h

=
τs

τM
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z =0

(4.25)

The standard aerodynamic formulae are used for surface fluxes:

τs = −cpCk|Vs|(ln θe − ln θ∗es)
τM = −CD|Vs|rVs,

(4.26)

where |Vs| is the magnitude of the surface horizontal velocity, Vs is the tangential
component of the surface wind, Ck and CD are exchange coefficients for enthalpy
and momentum and θ∗es is the saturation equivalent potential temperature at the sea
surface temperature. Then Eq. (4.13) gives

ln θe = ln θ∗es − µ
CD

Ck

1

cp(TB − Tout)

(
V 2 +

1

2
rfV

)
, at z = h, (4.27)

where Eq. (2.9) has been used to express M in terms of V and µ is the ratio of Vs

to V . Note that CD and Ck do not enter separately, but only as a ratio. Since V (r)
is related to p(r), Eq. (4.27) provides an additional constraint relating θe and p(r).
The other constraint is Eq. (4.19). In Region II, rf << V so that the second term
in parentheses on the right of Eq. (4.27) can be neglected compared with V 2 and
the equation may be written as

µV 2 =
Ck

CD

cp(TB − Tout)(ln θ∗es − ln θe), at z = h. (4.28)

Moreover, the gradient wind equation may be approximated as

V 2 ≈ cpTBr
∂

∂r
ln π. (4.29)

Then θe may be eliminated between Eqs. (4.27) and (4.19) to yield an equation for
pressure alone, which, in turn, through the gradient wind equation, determines the
velocity profile at the top of the boundary layer. An alternative derivation of Eq.
(4.28) will be in Section 4.5.
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4.2 Region III

In Region III we would have to use Eq. (4.24) rather than Eq. (4.23), but we do not
have an expression for wh. Emanuel (1986) circumvented this problem and assumed
that the combined effect of boundary-layer-induced subsidence and turbulent fluxes
at the top of the boundary layer is to keep the relative humidity of the boundary
layer at a relatively uniform level (typically about 80%). This allows one to obtain
a second relationship between θe and p(r) in Region III also. The derivation starts
from the approximate formula for θe:

ln θe = ln T − ln π +
Lq

cpT
. (4.30)

With the assumption that T does not vary with radius (= TB), and that θe is uniform
through the depth of the boundary layer we obtain:

ln θe − ln θea = − ln π + ln πa +
L

cpTB

(q − qa) at z = h, (4.31)

where a suffix ”a” refers to ambient values. Now the hydrostatic equation may be
written as dln π/dz = g/(cpT ), whereupon

ln π(z=h) = ln π(z=0) +

∫ h

0

gdz

cpT
,

and if T does not vary with radius, ln(πs/πh) = ln(πsa/πha), where the suffix ”s”
refers to surface values. Then Eq. (4.31) becomes

ln
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= − ln
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+
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cpTB

(q∗sRH − q∗saRHa). (4.32)

Now q ≈ εe∗(TB)/p, whereupon q∗ = qa
∗(psa/ps) = qa

∗(πsa/πs)
1/κ = exp[(1/κ)(πsa/πs)].

Then if RH = RHa,

ln
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πs

πsa

[
1 +
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∗RHa

RTB

]
. (4.33)

This is the desired second relationship between θe and p(r) in Region III, but note
that it is obtained from thermodynamic considerations alone.

4.3 Region I and the complete solution

Emanuel op. cit. presents an analysis in an appendix to show that with the as-
sumption that the eye is in solid body rotation, the M -surfaces and s∗ surfaces
approximately coincide and he uses this result to apply the relation (4.19) in Region
I also. Moreover he assumes that (4.27) applies also in the boundary layer within
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the eye. Then the radial variation of surface pressure can be obtained by solving the
last two relationships in Regions I and II and Eqs. (4.19) and (4.33) in Region III
and matching these solutions at the boundary between Regions II and III, which, as
noted earlier, Emanuel takes to be at radius rm. Then the gradient wind equation
may be used to find the tangential wind speed at the top of the boundary layer.
Finally the solution for the flow above the boundary layer may be obtained by eval-
uating quantities along angular momentum surfaces, whose shape is given by (4.12),
which may be written as

1

r2
|M =

1

M

ds∗

dM
[T − Tout(s

∗, pout)],

on the assumption that r << rout. The reader is referred to Emanuel’s paper for de-
tails of the calculations. Emanuel shows an example of a calculation for the following
parameter values: Ts = 27oC, TB = 22oC, Tout = −67oC, f evaluated at 28o latitude,
po = 1015 mb, ro = 400 km, Cθ = CD, RHa = 80%, and γ = 2, corresponding to a
Brunt-Väsälä frequency of 1.5 × 10−2. Under these conditions the central pressure
is 941 mb, the maximum tangential wind speed is 58 m s−1, the radius of maximum
winds is 36 km, and the ambient boundary layer θe is 349 K. The distributions of
M , θ∗e , V , and the temperature perturbation from the far environment at the same
altitude are shown in Fig. 4.2. The solution captures the main observed features of
a mature hurricane including the warm core at high altitude, the outward-sloping
velocity maximum, and the strong radial gradient of θ∗e near and inside the radius of
maximum tangential wind speed.

Emanuel op. cit. estimated the streamfunction at the top of the boundary layer
assuming that Eq. (4.23) gives the correct momentum balance in the boundary layer
without considering turbulent fluxes at the top of the layer, even if the neglect of such
fluxes yields an incorrect heat budget. Setting ϕb = M in (4.23) and using (4.23)
we can solve for the boundary-layer streamfunction, from which we can obtain the
vertical velocity using ρrwh = ∂ψ/∂r. The mean radial velocity in the boundary
layer is given by rū = −ψ/(ρ̄h), where h is the nominal depth of the layer and ρ̄
is the mean density. The radial distributions of wh and ū for the vortex described
above are shown in Fig. 4.3. These calculations are based on the assumptions that
ρ̄ and h are constants, with h = 1 km, and CD = 2× 10−3.

The vertical velocity profile in Fig. 4.3 shows a sharp peak at the radius of
maximum tangential wind, but radial velocity reaches its maximum at a much larger
radius. This is similar to the behaviour in the boundary-layer calculation shown
in Fig. 3.1. Here, however, the streamfunction has a discontinuity at rmax as a
consequence of matching two separate boundary layers there, since the radial gradient
of angular momentum is discontinuous. This results in a jump in u and a delta
function spike of vertical velocity at rmax. According to Emanuel, these unrealistic
features would not be present had a single boundary layer representation been applied
throughout the vortex. Note that wh becomes negative beyond a radius of about 220
km, which is not consistent with the choice of ro as 400 km.
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Figure 4.2: Distributions of: (a) absolute angular momentum (103 m2 s−1), (b)
saturation equivalent potential temperature, (c) gradient wind (m s−1), and (d) tem-
perature departure (oC) from the far environment at the same altitude, for the vortex
discussed above. (From Emanuel 1986)

4.4 The tropical cyclone as a Carnot heat engine

Emanuel suggests that the steady tropical cyclone may be regarded as a simple
Carnot heat engine in which air flowing inwards in the boundary layer acquires heat
energy (mostly in latent form2) from the sea surface, ascends, and ultimately gives off
heat at the much lower temperature of the upper troposphere or lower stratosphere.
A schematic of this heat engine is shown in Fig. 4.4. Air begins to flow inwards
at constant temperature along the lower boundary at radius ro and acquires an
incremental amount of heat

∆Q1 =

∫ θe

θea

cpTBd ln θe = cpTB ln

(
θe

θea

)
, (4.34)

2When water evaporates from the ocean, it takes heat out of the ocean and this energy then
resides in the water vapor content of the air. Because it does not immediately increase the temper-
ature of the air, it is called latent heat. Ultimately, when the water vapor condenses inside clouds,
the latent heat is converted to sensible heat and the temperature then actually increases somewhere
in the system.
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Figure 4.3: Radial distributions of vertical velocity (cm s−1), and mean radial velocity
(m s−1) within the boundary layer for the vortex discussed above. (From Emanuel
1986)

where θea is the equivalent potential temperature at ro. The air ascends at constant
entropy along an M surface and flows out to large radius. To complete the circuit,
the air eventually loses enough total heat through radiative cooling to return to its
ambient θe so that

∆Q2 =

∫ θea

θe

cpT̄outd ln θe = −cpTout ln

(
θe

θea

)
, (4.35)

where T̄out is given by (4.18). The total heating, from (4.34) and (4.35), is therefore

∆Q = ∆Q1 + ∆Q2 = cpTBε ln

(
θe

θea

)
, (4.36)

where ε = (TB − T̄out)/TB is the thermodynamic efficiency. This net heating is used
to do work against frictional dissipation in the steady tropical cyclone. Referring to
Fig. 4.4, it is seen that work is done against friction in the inflowing boundary-layer
air and also to change the angular momentum back to its ambient value at large radii
in the outflow. Kinetic energy is also dissipated by turbulence within cumulus clouds;
however, Emanuel argues that this sink primarily balances kinetic energy generated
by release of the ambient convective available potential energy as is probably the case
in the unperturbed tropical atmosphere. This is simply a statement that convective
clouds in tropical cyclones are locally similar to those away from such disturbances.
The balance between total heating and frictional dissipation in the inflow and outflow
may be written symbolically as

∆Q = WPBL + Wo, (4.37)
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where WPBL, and Wo are the work done in the boundary layer and outflow, respec-
tively. The latter is simply proportional to the change in kinetic energy needed to
bring the angular momentum of the outflow, M , back to its ambient value Mo:

Figure 4.4: The tropical cyclone as a Carnot heat engine.
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where we have related azimuthal velocity to angular momentum using (1) and r1 is
some large radius at which the exchange takes place. In the limit of large r1,

lim
r1→0

W0 =
1

2
f(M0 −M) =

1

4
f 2(r2

0 − r2)− 1

2
frV. (4.39)

Using the above (4.36) and (4.37) we infer the work done in the boundary layer:

WPBL = CP TBε ln
θe

θea

+
1

2
frV − 1

4
f 2

(
r2
0 − r2

)
. (4.40)

Finally, knowledge of the work done against dissipation in the boundary layer allows
an evaluation of the pressure distribution in the boundary layer through the use
of Bernoulli’s equation. The latter, when integrated inward from r0 at constant
temperature, may be written

1

2
V 2 + CP TBε ln π + WPBL = 0 at z = 0. (4.41)
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When (4.40) is substituted into this and the gradient wind equation is used for the
sum V 2 + frV , the result is

ln π +
1

2
r
∂ ln π

∂r
+ ε ln

θe

θea

− 1

4

f 2

CpTB

(r2
0 − r2) = 0 at z = 0, (4.42)

which is identical to (4.19). This confirms the interpretation of the results of the
previous section in terms of a Carnot engine.

4.5 The potential intensity of tropical cyclones

As we have seen, tropical cyclones derive their energy from the thermodynamic dis-
equilibrium that exists between the tropical oceans and the overlying atmosphere.
By taking into account both the rate and the efficiency with which this reservoir
of heat energy can be converted into wind energy it is possible to derive a speed
limit for hurricanes, which depends mostly on ocean and atmospheric temperatures.
In nature, interaction of tropical cyclones with their atmospheric and oceanic envi-
ronment limits the intensity of most (but not all) storms to values well below the
theoretical limit. Nevertheless, limit theory is useful for estimating the most intense
storm likely to strike a given area over a reasonably long period of time.

Emanuel (1986, 1995) described a method of estimating upper bounds on tropical
cyclone intensity that uses the energy cycle of the storm to estimate the maximum
possible surface wind speed. The central pressure can be estimated also by assuming
a particular radial profile of azimuthal wind inside the eye.

Figure 4.5: For discussion see text. (From Emanuel

The energy cycle is illustrated in Fig. 4.5. Air spirals in toward the storm center
and, owing to the large surface wind speeds, rapidly acquires heat from the underlying
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ocean. This additional heat shows up mostly as an increase in the humidity, rather
than the temperature, of the air. The total increase in heat content on this leg is
proportional to the increase in water vapor content and the decrease in pressure; this
latter effect is called “heat input by isothermal expansion.”

Once the air reaches the eyewall, it turns upward and quickly rises through the
eyewall to around 15-18 km altitude, where it then flows outward. The ascent is
nearly adiabatic; that is, no net heat is added in this leg, though there are large con-
versions of latent to sensible heat. The heat is exported to the storm’s environment
and ultimately lost by radiation to space.

Only a fraction of the heat put into the heat engine is available for generation of
wind energy. This fraction is called the thermodynamic efficiency, ε, and is defined
by

ε =
Ts − Tout

Tout

, (4.43)

where Ts is the temperature of the heat source (in this case, the ocean surface) and
Tout is the average temperature at which heat is exported from the system, both
measured in Kelvin). The taller a hurricane is, the lower the temperature at its top
and thus, from (4.43), the greater the thermodynamic efficiency. Moreover, if we
know how much heat air has in the eyewall and we know the vertical temperature
structure of the air in the environment of the storm, then we can calculate how high
air will rise in the eyewall and thus we can calculate Tout. Note that Tout is just the
temperature of the environment corresponding with the level of neutral buoyancy of
air with equivalent potential temperature θeb when lifted from height z = h. This
temperature, together with sea surface temperature, gives us ε, from (4.43). In a
typical hurricane, ε is about 1/3.

The rate of input of available energy, into the hurricane from the sea surface, for
each square metre of sea surface covered by the storm, is given by

G = εCkρVs(k
∗
s − kb), (4.44)

where G stands for “generation”, Ck is a dimensionless coefficient called the enthalpy
transfer coefficient and k∗s and kb are the enthalpies of the ocean surface and the
atmosphere near the surface, respectively (compare with Eq. (4.26)). To obtain the
entire energy input, it is necessary to sum the contributions given by (4.44) over the
area of the ocean surface affected by the storm. Emanuel assumes that this sum is
dominated by the contribution near the radius of maximum wind, where Vs is large.

What happens to all this energy that is generated by heat transfer from the sea
surface? When the storm has reached a nearly steady condition (on which its inten-
sity is no longer changing), almost all of the energy generated is used up by friction
acting between the powerful winds and the sea surface. The rate of mechanical
dissipation in the system, for each square meter of ocean surface, is given by

D = CDρV 3
s , (4.45)



CHAPTER 4. THE EMANUEL STEADY STATE HURRICANE MODEL 74

where D stands for “dissipation” and the other symbols are the same as in (4.44), but
CD is a different coefficient, called the drag coefficient. Once again, it is necessary to
sum (4.45) over each square metre of ocean surface affected by the storm, but we will
assume again that it is dominated by the contributions near the radius of maximum
wind.

Equating generation, given by (4.44), to dissipation, given by (4.45), gives an
expression for the wind speed:

V 2
m =

Ck

CD

εTs(k
∗
s − kb)m, (4.46)

where the subscript ”m” reminds us that we should evaluate the quantities near the
radius of maximum wind.

It is important to note here that (4.46) can be derived much more rigorously than
has been done here and that when this is done, it turns out that given by (4.46) is
indeed an expression for the maximum surface wind speed (see Bister and Emanuel,
1998). It is also important to recognize that the derivation of (4.46) depends in no
way on what happens inside the eye of the storm.

To actually evaluate (4.46), it is necessary to know several things. First, we have
to know the ratio of heat to momentum exchange coefficients, Ck/CD. Unfortunately,
no measurements of either of these coefficients have been made at hurricane wind
speeds. For now, it is assumed that this ratio is 1. Another thing we have to know is
the saturation enthalpy of the ocean surface, k∗s . This depends mostly on sea surface
temperature, but also on sea level pressure at the radius of maximum winds. To get
this, it is necessary to assume something about the distribution of wind outside the
radius of maximum winds. The calculation of k∗s is not terribly sensitive to what one
assumes about this distribution, as long as it is reasonable. One also has to estimate
the enthalpy of the air just above the sea surface, kb, at the radius of maximum
winds. This must be at least as large as the entropy of unperturbed boundary layer
air, and it depends on temperature, pressure, and relative humidity. Emanuel (1995)
assumes that the air temperature is closely linked to the sea surface temperature, a
fact that is supported by the boundary-layer calculation in Section 3. He assumes
also that the relative humidity is the same as that of the unperturbed environment
(usually around 75-80%). Finally, one has to estimate ε. To do this, one has to first
estimate Tout, the temperature at which air flows out of the top of the storm; this
is also equivalent to estimating the altitude of the storm top. This accomplished
by finding out how high up in the eyewall the air remains warmer than the distant
environment, and is straightforward to assess given the vertical profile of temperature
in the storm environment.

Storm intensity is also often measured by its central pressure. One method of
getting the central pressure is to first assume that the eye is in “solid body rotation,”
i.e., that the swirling wind increases linearly with radius out to the radius of max-
imum wind. Taking the wind field to be balanced by the radial pressure gradient
is an excellent approximation in the hurricane eye, and so one can easily calculate
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the central pressure given the pressure at the radius of maximum winds and the
maximum wind speed, both of which we know from the aforementioned reasoning.
This gives

pc = pmexp(−V 2
m/2RdTs), (4.47)

where Rd is the gas constant for air.

Figure 4.6: For discussion see text. (From Emanuel)

To gain an idea of how the storm intensity depends on sea surface and storm
outflow temperature, examine Fig. 4.6a and Fig. 4.6b, which use (4.46) and (4.47)
to calculate pc and Vm given ocean temperature and T0, and assuming that the
relative humidity under the eyewall is 75%. Both measures show intensity increasing
with sea surface temperature, and the rate of increase also gets steeper at higher sea
surface temperature. Note also that at very high sea surface temperature and low
outflow temperature, there are no solutions to the equations. This is the “hypercane”
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regime. Numerical simulations in this regime produce very intense storms (with wind
speeds near the speed of sound), and it has been speculated that such storms may
have formed over pools of very hot water created by large asteroid impacts with the
ocean. But we do not have to worry about hypercanes otherwise!

Figure 4.7: For discussion see text. (From Emanuel)

One prediction of the form of limiting theory presented here is that the intensity of
tropical cyclones should depend on the ratio of surface exchange coefficients, Ck/CD

(see Eq. 4.46). As mentioned above, we do not know very well what this is in nature,
but we are free to specify it in computer models of hurricanes. Figure 4.7 shows the
results of running two quite different computer models and comparing the results
with the theory (see Emanuel, 1995, for details). As predicted, the storm intensity
does increase with Ck/CD.

To solve the foregoing equations, one can write (4.46) in the form

V 2
m =

Ck

CD

Ts

Tout

Ts − Tout(s
∗
ps − spb)m, (4.48)

where s∗ps and spb are the pseudo-saturation entropies. Since both these quantities
are constant, Eq. (4.48) may be written as

V 2
m =

Ck

CD

Ts

Tout

∫ Ts

Tout

(s∗ps − spb)mdT . (4.49)
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or

V 2
m =

Ck

CD

Ts

Tout

∫ Ts

Tout

[(s∗ps − s∗pa)− (spb − s∗pa)]dT . (4.50)

which, from Eq. (10.12) is approximately

V 2
m =

Ck

CD

Ts

Tout

(CAPE∗ − CAPE)m , (4.51)

where CAPE∗ is the convective available potential energy of air lifted from satura-
tion at sea level in reference to the environmental sounding, and CAPE is that of
boundary layer air (see section 4.6). Both quantities are evaluated near the radius of
maximum wind. To evaluate (4.50) it is necessary to determine the surface pressure
at the radius of maximum winds, needed to calculate the saturation mixing ratio
necessary for CAPE∗. To do so, we use Eq. (4.16), which represents a combina-
tion of gradient wind balance and thermal wind balance in the outer region of the
hurricane. Since s∗ = cp ln θ∗e , this equation may be written as

−[TB−Tout(s
∗, pout)]

∂s∗

∂r
= cpTs

[
∂ ln π

∂r
+

1

2

∂

∂r

(
r
∂ ln π

∂r

)]
+

1

2
rf 2, at z = h. (4.52)

Integrating with respect to radius then gives

−
∫ rm

r0

[TB − Tout(s
∗, pout)]

∂s∗

∂r
dr = cpTs

[
ln

πm

π0

+
1

2

(
r
∂ ln π

∂r

)

m

− 1

2

(
r
∂ ln π

∂r

)

0

]

+
1

4
f 2(r2

m − r2
0), at z = h. (4.53)

The left-hand-side of this equation is

∫ s∗0

sm∗

[TB − Tout(s
∗, pout)]ds∗ (4.54)

and we show in an appendix (section 4.6) that this is equal to CAPEm. The first
term in brackets on the right-hand-side is equal to RTs ln(p0/pm), where p0 is the
ambient surface pressure and pm is the surface pressure at the radius of maximum
winds. Using the gradient-wind equation in the form

V 2

r
+ fV = cpTs

∂

∂r
ln π ,

the second and third terms in brackets on the right-hand-side are approximately equal
to 1

2
(V 2

m− fV0r0), assuming that the flow is cyclostrophic at r = rm and geostrophic
at r = r0. The term 1

4
f 2r2

m is also << 1
2
V 2

m. Furthermore, the term 1
2
fV0r0 is smaller

in magnitude than 1
4
f 2r2

m. Thus Eq. (4.53) becomes

RTs ln
p0

pm

= 1
2
V 2

m − CAPEm − 1
4
f 2r2

o. (4.55)
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This is the desired relationship for pm.
To calculate CAPEm, the mixing ratio and temperature of the boundary layer

under the eyewall is needed. Following Emanuel (1995a), we assume that the surface
temperature is Ts and that the relative humidity is constant from the outer region
to the outer edge of the eyewall. Since the pressure under the eyewall is lower
than ambient, this entails a small inward increase in mixing ratio. For this reason,
CAPEm is a little larger than the CAPE of ambient boundary layer air. Emanuel
claims that the assumption of constant relative humidity in the outer region boundary
layer is well supported by numerical simulations. Given a value of Ck/CD, the
sea surface temperature, and an ambient profile of virtual temperature, (4.51) and
(4.52) constitute closed relations for Vm and pm. CAPE is calculated by a reversible
adiabatic parcel lifting algorithm. Owing to the pressure dependence of CAPE∗

m

and CAPEm, (4.51) and (4.52) must be solved iteratively. This always converges
unless one is in the “hypercane” regime.

4.6 Appendix to Chapter 4

4.6.1 Evaluation of the integral in Eq. (4.49)

Figure 4.8: The integral in Eq. (4.49) represents the area BCFE in the figure - see
text.

The integral in Eq. (4.49) represents the area BCFE in the Fig. 4.8. This area
is equal to the area AEFD - ABCD. The area AEFD is approximately equal to the
CAPE of an air parcel lifted from saturation at the sea surface temperature, while
the area ABCD is the CAPE of a parcel lifted from the top of the boundary layer
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(see section 10.1.2). The integral in Eq. (4.54) represents the shaded area shown in
the Fig. 4.9. The area AEFD is approximately equal to the CAPE of an air parcel
lifted from the top of the boundary layer.

Figure 4.9: The integral in Eq. (4.54) represents the shaded area shown in the figure
- see text.



Chapter 5

TROPICAL CYCLONE MOTION

The prediction of tropical cyclone motion has improved dramatically during the last
decade as has our understanding of the mechanisms involved. Some of the basic
aspects of tropical cyclone motion can be illustrated in terms of barotropic theory,
which assumes that the vortex structure is independent of height. We begin first by
examining this theory and go on in a following section to examine baroclinic aspects
of motion.

5.1 Vorticity-streamfunction method

The vorticity-streamfunction method is a powerful way of solving two-dimensional
flow problems for a homogeneous, incompressible fluid. It is conventional to choose
a rectangular coordinate system (x, y), with x pointing eastwards and y pointing
northwards. For two-dimensional motion in the x-y-plane, the relative vorticity, ζ,
is defined as ∂v/∂x− ∂u/∂y and satisfies the equation

∂

∂t
(ζ + f) + u

∂

∂x
(ζ + f) + v

∂

∂y
(ζ + f) = 0, (5.1)

where u and v are the velocity components in the x and y directions, respectively.
For an incompressible fluid, the continuity equation is

∂u

∂x
+

∂v

∂x
= 0, (5.2)

and accordingly there exists a streamfunction ψ such that

u = −∂ψ

∂y
, v =

∂ψ

∂x
, (5.3)

and

ζ =
∂2ψ

∂x2
+

∂2ψ

∂y2
, (5.4)

80



CHAPTER 5. TROPICAL CYCLONE MOTION 81

Equation (5.1) is a prediction equation for the absolute vorticity, ζ +f , and states
that this quantity is conserved following columns1 of fluid. Equation (5.4) can be
used as an expression for calculating ζ if ψ is known, or, alternatively, as an elliptic
second-order partial differential equation for ψ if ζ is known. When ψ is known, u
and v can be calculated from the expressions (5.3).

In a few simple cases it may be possible to obtain an analytic solution of Eqs.
(5.1), (5.3) and (5.4), but in general we must resort to numerical methods. The
system of equations can be solved numerically using the following steps:

• From a given initial distribution of ψ at, say t = 0, we can calculate the initial
velocity distribution from Eq. (5.3) and the initial vorticity distribution from
Eq, (5.4). Alternatively, given the initial vorticity distribution, we can solve
Eq. (5.4) for the initial streamfunction distribution ψ and then calculate the
initial velocity distribution from Eq. (5.3).

• We are now in a position to predict the vorticity distribution at a later time,
say t = ∆t, using Eq. (5.1).

• Then we can solve Eq. (5.4) for the streamfunction distribution ψ at time ∆t
and the new velocity distribution from Eq. (5.3).

• We now repeat this procedure to extend the solution forward to the time t =
2∆t, and so on.

5.2 The partitioning problem

An important issue that arises in the study of tropical cyclone motion is the so-called
partitioning problem, i.e. the problem of deciding what is the cyclone and what is its
environment. Of course, Nature makes no distinction so that any partitioning that
we make to enable us to discuss the interaction between the tropical cyclone and its
environment is necessarily non-unique.

Various methods have been proposed to isolate the cyclone from its environment
and each may have their merits in different applications. One obvious possibility
is to define the cyclone as the azimuthally-averaged flow about the vortex centre,
and the residual flow (i.e. the asymmetric component) as ”the environment”. But
then the question arises: which centre? We show below that, in general, the location
of the minimum surface pressure and the centre of the vortex circulation at any
level are not coincident. The pros and cons of various methods are discussed by
Kasahara and Platzman (1963) and Smith et al. (1990). Many theoretical studies
consider the motion of an initially symmetric vortex in some analytically-prescribed
environmental flow. If the flow is assumed to be barotropic, there is no mechanism

1In a two-dimensional flow, there is no dependence of u, v, or ζ on the z-coordinate and we can
think of the motion of thin columns of fluid of uniform finite depth, or infinite depth, analogous to
fluid parcels in a three-dimensional flow.
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to change the vorticity of air columns. In this case it is advantageous to define
the vortex to be the initial relative vorticity distribution, appropriately relocated, in
which case all the flow change accompanying the vortex motion resides in the residual
flow that is considered to be the vortex environment. We choose also the position
of the relative vorticity maximum as the ’appropriate location’ for the vortex. An
advantage of this method (essentially Kasahara and Platzman’s method III) is that
all the subsequent flow changes are contained in one component of the partition
and the vortex remains ”well-behaved” at large radial distances. Further, one does
not have to be concerned with vorticity transfer between the symmetric vortex and
the environment as this is zero, by definition. The method has advantages also for
understanding the motion of initially asymmetric vortices as discussed by Smith et
al. (1990) and in Section 4.1.

The partitioning method can be illustrated mathematically as follows. Let the
total wind be expressed as u = us + U, where us denotes the symmetric velocity
field and U is the vortex environment vorticity, and define ζs = k · ∇ ∧ us and
Γ = k · ∇ ∧ U, where k is the unit vector in the vertical. Then Eq. (5.1) can be
partitioned into two equations:

∂ζs

∂t
+ c(t) · ∇ζs = 0, (5.5)

and
∂Γ

∂t
= −us · ∇(Γ + f)− (U− c) · ∇ζs −U · ∇(Γ + f), (5.6)

noting that us · ∇ζs = 0, because for a symmetric vortex us is normal to ∇ζs.
Equation (5.5) states that the symmetric vortex translates with speed c and Eq. (5.6)
is an equation for the evolution of the asymmetric vorticity. Having solved the latter
equation for Γ(x, t), we can obtain the corresponding asymmetric streamfunction by
solving Eq. (5.4) in the form ∇2ψa = Γ. The vortex translation velocity c may
be obtained by calculating the speed Uc = k ∧ ∇ψa at the vortex centre. In some
situations it is advantageous to transform the equations of motion into a frame of
reference moving with the vortex2. Then Eq. (5.5) becomes ∂ζs/∂t ≡ 0 and the
vorticity equation (5.6) becomes

∂Γ

∂t
= −us · ∇(Γ + f)− (U− c) · ∇ζs − (U− c) · ∇(Γ + f). (5.7)

5.3 Prototype problems

5.3.1 Symmetric vortex in a uniform flow

Consider a barotropic vortex with an axisymmetric vorticity distribution embedded
in a uniform zonal air stream on an f-plane. The streamfunction for the flow has the

2See Appendix 9.1 for details.
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form:
ψ(x, y) = −Uy + ψ′(r), (5.8)

where r2 = (x− Ut)2 + y2. The corresponding velocity field is

u = (U, 0) +

(
−∂ψ′

∂y
,
∂ψ′

∂x

)
, (5.9)

The relative vorticity distribution, ζ = ∇2ψ, is symmetric about the point
(x − Ut, 0), which translates with speed U in the x-direction. However, neither
the streamfunction distribution ψ(x, y, t), nor the pressure distribution p(x, y, t), are
symmetric and, in general, the locations of the minimum central pressure, maximum
relative vorticity, and minimum streamfunction (where u = 0) do not coincide. In
particular, there are three important deductions from (5.9):

• The total velocity field of the translating vortex is not symmetric, and

• The maximum wind speed is simply the arithmetic sum of U and the maximum
tangential wind speed of the symmetric vortex, Vm = (∂ψ′/∂r)max.

• The maximum wind speed occurs on the right-hand-side of the vortex in the
direction of motion in the northern hemisphere and on the left-hand-side in the
southern hemisphere.

Figure 5.1 shows an example of the vorticity, streamfunction and wind speed
distribution for the tropical-cyclone-scale vortex in Fig. 5.6, translating in a uniform
westerly current of 10 m s−1. The maximum tangential velocity is 40 m s−1 at a
radius of 100 km.

Because the vorticity field is Galilean invariant while the pressure field and
streamfunction fields are not, it is advantageous to define the vortex centre as the
location of maximum relative vorticity and to transform the equations of motion to
a coordinate system (X,Y ) = (x − Ut, y), whose origin is at this centre3. In this
frame of reference, the streamfunction centre is at the point (0, Ys), where

U − Φ(Ys)Ys = 0, (5.10)

and Φ = ψ′(r)/r. This point is to the left of the vorticity centre in the direction of
motion in the northern hemisphere. In the moving coordinate system, the momentum
equations may be written in the form

∇p = ρΦ(Φ + f)(X, Y ) + ρf(0, U). (5.11)

The minimum surface pressure occurs where ∇p = 0, which from (5.11) is at the
point (0, Yp) where

YpΦ(Yp)(Φ(Yp) + f) = fU. (5.12)

3The transformation of the equations of motion to a moving coordinate system is derived in
Appendix 9.1.
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Figure 5.1: Contour plots of (a) total wind speed, (b) relative vorticity, and (c)
streamlines, for a vortex with a symmetric relative vorticity distribution and maxi-
mum tangential wind speed of 40 m s−1 in a uniform zonal flow with speed 10 m s−1

on an f -plane. The maximum tangential wind speed occurs at a radius of 100 km
(for the purpose of illustration). The contour intervals are: 5 m s−1 for wind speed,
2× 10−4 s−1 for relative vorticity and 1× 104 m2 s−1 for streamfunction.

We show that, although Yp and Ys are not zero and not equal, they are for practical
purposes relatively small.

Consider the case where the inner core is in solid body rotation out to the radius
rm, of maximum tangential wind speed vm, with uniform angular velocity Ω = vm/rm.
Then ψ′(r) = Ωr and Φ = Ω. It follows readily that Ys/rm = U/vm and Yp/rm =
U/(vmRom), where Rom = vm/(rmf) is the Rossby number of the vortex core which
is large compared with unity in a tropical cyclone. Taking typical values: f =
5 × 10−5 s−1, U = 10 m s−1, vm = 50 m s−1, rm = 50 km, Rom = 20 and Ys =
10 km, Yp = 0.5 km, the latter being much smaller than rm. Clearly, for weaker
vortices (smaller vm) and/or stronger basic flows (larger U), the values of Ys/rm and
Yp/rm are comparatively larger and the difference between the various centres may
be significant.
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5.3.2 Vortex motion on a beta-plane

Another prototype problem for tropical-cyclone motion considers the evolution of
an initially-symmetric barotropic vortex on a Northern Hemisphere β-plane in a
quiescent environment. The problem was investigated by a number of authors in the
late 80s using numerical models (Chan and Williams, 1987; Fiorino and Elsberry
1989; Smith et al. 1990; Shapiro and Ooyama 1990) and an approximate analytic
solution was obtained by Smith and Ulrich (1990). In this problem, the initial
absolute vorticity distribution, ζ + f is not symmetric about the vortex centre: a
fluid parcel at a distance yo poleward of the vortex centre will have a larger absolute
vorticity than one at the same distance equatorward of the centre. Now Eq. (5.1)
tells us that ζ + f is conserved following fluid parcels and initially at least these
will move in circular trajectories about the centre. Clearly all parcels initially west
of the vortex centre will move equatorwards while those initially on the eastward
side will move polewards. Since the planetary vorticity decreases for parcels moving
equatorwards, their relative vorticity must increase and conversely for parcels moving
polewards. Thus we expect to find a cyclonic vorticity anomaly to the west of the
vortex and an anticyclonic anomaly to the east.

Figure 5.2: An air parcel moving in a circular orbit of radius r with angular velocity
Ω(r) is located at the point B with polar coordinates (r, λ) at time t. At time t = 0
the parcel was located at point A with coordinates (r, λ− Ω(r)t). During this time
it undergoes a meridional displacement r[sin λ− sin(λ− Ω(r)t)].

To a first approximation we can determine the evolution of the vorticity asymme-
tries by assuming that the flow about the vortex motion remains circular relative to
the moving vortex (we discuss the reason for the vortex movement below). Consider
an air parcel that at time t is at the point with polar coordinate (r, λ) located at
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the (moving) vortex centre (Fig. 5.2). This parcel would have been at the position
(r, λ − Ω(r)t) at the initial instant, where Ω(r) = V (r)/r is the angular velocity at
radius r and V (r) is the tangential wind speed at that radius. The initial vorticity
of the parcel is ζs(r) + f0 + βr sin(λ − Ω(r)t) while the vorticity of a parcel at its
current location is ζ(r) + f0 + βr sin λ. Therefore the vorticity perturbation ζa(r, λ)
at the point (r, λ) at time t is ζ(r)− ζs(r), or

ζa(r, λ) = βr[sin λ− sin(λ− Ω(r)t)]

or
ζa(r, λ) = ζ1(r, t) cos λ + ζ2(r, t) sin λ, (5.13)

where
ζ1(r, t) = −βr sin(Ω(r)t), ζ2(r, t) = −βr[1− cos(Ω(r)t)]. (5.14)

We can now calculate the asymmetric streamfunction ψa(r, λ, t) corresponding to
this asymmetry using Eq. (5.4). The solution should satisfy the boundary condition
that ψ → 0 as r →∞. It is reasonable to expect that ψa will have the form:

ψa(r, λ) = Ψ1(r, t) cos λ + Ψ2(r, t) sin λ, (5.15)

and it is shown in Appendix 3.4.1 that

Ψn(r, t) = −r

2

∫ ∞

r

ζn(p, t) dp− 1

2r

∫ r

0

p2ζn(p, t) dp (n = 1, 2), (5.16)

The Cartesian velocity components (Ua, Va) = (−∂Ψa/∂y, ∂Ψa/∂x) are given by

Ua = cos λ sin λ

[
Ψ1

r
− ∂Ψ1

∂r

]
− sin2 λ

∂Ψ2

∂r
− cos2 λ

Ψ2

r
, (5.17)

Va = cos2 λ
∂Ψ1

∂r
+ sin2 λ

Ψ1

r
− cos λ sin λ

[
Ψ2

r
− ∂Ψ2

∂r

]
. (5.18)

In order that these expressions give a unique velocity at the origin, they must be
independent of λ as r → 0, in which case

∂Ψn

∂r

∣∣∣∣
r=0

= lim
r→0

Ψn

r
, (n = 1, 2).

Then

(Ua, Va)r=0 =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (5.19)

and using (5.16) it follows that

∂Ψn

∂r

∣∣∣∣
r=0

= −1

2

∫ ∞

0

ζn(p, t) dp. (5.20)
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If we make the reasonable assumption that the symmetric vortex moves with the
velocity of the asymmetric flow across its centre, the vortex speed is simply

c(t) =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (5.21)

which can be evaluated using (5.14) and (5.20).
The assumption is reasonable because at the vortex centre ζ À f and the gov-

erning equation (5.1) expresses the fact that ζ +f is conserved following the motion.
Since the symmetric circulation does not contribute to advection across the vortex
centre (recall that the vortex centre is defined as the location of the maximum rela-
tive vorticity), advection must be by the asymmetric component. With the method
of partitioning discussed in section 3.2, this component is simply the environmental
flow by definition. The slight error committed in supposing that ζ is conserved rather
than ζ +f is equivalent to neglecting the propagation of the vortex centre. The track
error amounts to no more than a few kilometers per day which is negligible compared
with the actual vortex displacements (e.g., see Fig. 5.6).

The vortex track, X(t) = [X(t), Y (t)] may be obtained by integrating the equa-
tion dX/dt = c(t), and using (5.20) and (5.21), we obtain

[
X(t)
Y (t)

]
=




1
2

∫∞
0

{∫ 1

0
ζ2(p, t)dt

}
dp

−1
2

∫∞
0

{∫ 1

0
ζ1(p, t)dt

}
dp


 . (5.22)

With the expressions for ζn in (5.14), this expression reduces to

[
X(t)
Y (t)

]
=


 −1

2
β

∫∞
0

r
[
t− sin(Ω(r)t)

Ω(r)

]
dr

1
2
β

∫∞
0

r
[

1−cos(Ω(r)t)
Ω(r)

]
dr


 . (5.23)

This expression determines the vortex track in terms of the initial angular velocity
profile of the vortex. To illustrate the solutions we choose the vortex profile used by
Smith et al. (1990) so that we can compare the model results with their numerical
solutions. The velocity profile V (r) and corresponding angular velocity profile Ω(r)
are shown as solid lines in Fig. 5.3. The maximum wind speed of 40 m s−1 occurs
at a radius of 100 km and the region of approximate gale force winds (> 15 m
s−1) extends to 300 km. The angular velocity has a maximum at the vortex center
and decreases monotonically with radius. Figure 5.6 shows the asymmetric vorticity
field calculated from (5.14) and the corresponding streamfunction field from (5.16)
at selected times, while Fig. 5.4 compares the analytical solutions with numerical
solutions at 24 h.

The integrals involved are calculated using simple quadrature. After one minute
the asymmetric vorticity and streamfunction fields show an east-west oriented di-
pole pattern. The vorticity maxima and minima occur at the radius of maximum
tangential wind and there is a southerly component of the asymmetric flow across



CHAPTER 5. TROPICAL CYCLONE MOTION 88

Figure 5.3: (left) Tangential velocity profile V (r) and (right) angular velocity profile
Ω(r) for the symmetric vortex.

the vortex center (Fig. 5.4a). As time proceeds, the vortex asymmetry is rotated by
the symmetric vortex circulation and its strength and scale increase. The reasons
for this behaviour are discussed below. In the inner core (typically r < 200 km),
the asymmetry is rapidly sheared by the relatively large radial gradient of Ω (Fig.
5.4b). In response to these vorticity changes, the streamfunction dipole strengthens
and rotates also, whereupon the asymmetric flow across the vortex center increases
in strength and rotates northwestwards. Even at 24 h, the asymmetric vorticity and
streamfunction patterns show remarkable similarity to those diagnosed from the com-
plete numerical solution of Smith et al. (1990), which can be regarded as the control
calculation (see Fig. 5.5). The numerical calculation was performed on a 2000 km ×
2000 km domain with a 20 km grid size. Despite the apparent similarities between
the analytically and numerically calculated vorticity patterns in Fig. 5.5, the small
differences in detail are manifest in a more westerly oriented stream flow across the
vortex center in the analytical solution and these are reflected in differences in the
vortex tracks shown in Fig. 5.6. It follows that the analytical solution gives a track
that is too far westward, but the average speed of motion is comparable with, but a
fraction smaller than in the control case for this entire period. Even so, it is apparent
that the simple analytic solution captures much of the dynamics in the full numerical
solution.

Exercises

(3.1) Starting from Eq. 5.6 and the assumptions that air parcels move in circular
orbits about the vortex centre while conserving their absolute vorticity and that
the relative advection of vortex vorticity is small, show that the asymmetric
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Figure 5.4: Asymmetric vorticity (top panels) and streamfunction fields (bottom
panels) at selected times: (a) 1 min, (b) 1 h, (c) 3 h, (d) 12 h. Contour intervals for
ζa are: 1× 10−8 s−1 in (a), 5× 10−7 s−1 in (b), 1× 10−6 s−1 in (c), and 2× 10−6 s−1

in (d). Contour intervals for ψa are: 100 m2 s−1 in (a), 6× 103 m2 s−1 in (b), 1× 104

m2 s−1 in (c), and 5× 104 m2 s−1 in (d). (continued overleaf)

vorticity approximately satisfies the equation:

∂ζa

∂t
+ Ω(r)

∂ζa

∂λ
= −βrΩ(r) sin λ. (5.24)

(3.2) Show that the equation

∂X

∂t
+ Ω(r, t)

∂X

∂λ
= −βrΩ(r, t) cos λ

has the solution
X = −βr(sin λ− sin(λ− ω)),
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Fig. 5.4 (continued)

where

ω =

∫ t

0

Ω(r, t′)dt′.

The analytic theory can be considerably improved by taking account of the con-
tribution to the vorticity asymmetry, ζa1, by the relative advection of symmetric
vortex vorticity, ζs. This contribution is represented by the term −(Ua − c) · ∇ζs

in Eq. 5.6 (the second term on the right-hand-side). Again, with the assumption
that air parcels move in circular orbits about the vortex centre while conserving their
absolute vorticity, ζa1 satisfies the equation:

∂ζa1

∂t
+ Ω(r)

∂ζa1

∂λ
= −(Ua − c) · ∇ζs, (5.25)

where the components of Ua are given by Eqs. (5.17) and (5.18), and c is given by
Eq. (5.21). Further details of this calculation are given in Appendix 3.4.2. With
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this correction there is excellent agreement between the numerically and analytically
calculated tracks (compare the tracks AC and N in Fig. 5.6).

Figure 5.5: Comparison of the analytically-computed asymmetric vorticity and
streamfunction fields (upper right and lower right) with those for the corresponding
numerical solutions at 24 h. Only the inner part of the numerical domain, centred
on the vortex centre, is shown (the calculations were carried out on a 2000 km ×
2000 km domain). Contour intervals are 5 × 10−6 s−1 for ζa and 105 m2 s−1 for ψa.
The tropical cyclone symbol represents the vortex centre.

The foregoing analytical solution shows that the vorticity asymmetry is domi-
nated by a pair of orthogonal dipoles with different radial profiles and strengths and
that these profiles evolve with time. These profiles are characterized by the func-
tions Ψn(r, t) in Eq. (5.15), which are shown in Fig. 5.7 at 24 h. At this time the
maximum amplitude of the vorticity asymmetry is located more than 350 km from
the vortex centre, where the tangential wind speed of the vortex is only about one
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Figure 5.6: Comparison of the analytically calculated vortex track (denoted by A)
compared with that for the corresponding numerical solution (denoted by N). The
track by AC is the analytically corrected track referred to in the text.

quarter of its maximum value. As time proceeds, the strength of the asymmetry
and the radius at which the maximum occurs continue to increase until about 60 h
when the radius of the maximum stabilizes (see Smith et al. 1990, Fig. 5). This
increase in the strength and scale of the gyres in the model is easy to understand if
we ignore the motion of the vortex. As shown above, the change in relative vorticity
of a fluid parcel circulating around the vortex is equal to its displacement in the
direction of the absolute vorticity gradient times the magnitude of the gradient. For
a fluid parcel at radius r the maximum possible displacement is 2r, which limits the
size of the maximum asymmetry at this radius. However, the time for this displace-
ment to be achieved is π/Ω(r), where Ω(r) is the angular velocity of a fluid parcel at
radius r. Since Ω is largest at small radii, fluid parcels there attain their maximum
displacement relatively quickly, and as expected the maximum displacement of any
parcel at early times occurs near the radius of maximum tangential wind (Fig. 5.8a).
However, given sufficient time, fluid parcels at larger radii, although rotating more
slowly, have the potential to achieve much larger displacements than those at small
radii; as time continues, this is exactly what happens (Fig 5.8b). Ultimately, of
course, if Ω(r) decreases monotonically to zero, there is a finite radius beyond which
the tangential wind speed is less than the translation speed of the vortex. As the
maximum in the asymmetry approaches this radius the vortex motion can no longer
be ignored (see Smith and Ulrich 1990, Fig. 12).

Since the absolute vorticity is the conserved quantity in the barotropic flow prob-
lem it is instructive to examine the evolution of the isolines of this quantity as the
flow evolves. At the initial time the contours are very close to circular near the vortex
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Figure 5.7: Radial profiles of Ψn/Ψmax (n = 1, 2) at 24 hh where Ψmax is the
maximum absolute value of Ψn. Solid line is Ψ1, dashed line is Ψ2. Here, Ψ1max =
4.8× 105 m2 s−1; Ψ1max = 4.2× 105 m2.

centre and are oriented zonally far from the centre. The pattern after 24 h, shown
in Fig. 5.9, illustrates how contours are progressively wound around the vortex with
those nearest the centre drawn out into long filaments. This filamentation process
is associated with the strong angular shear of the tangential wind profile (see Fig.
5.3b). In reality, the strong gradients of asymmetric relative vorticity would be re-
moved by diffusive processes. The filamentation is comparatively slow at larger radial
distances so that coherent vorticity asymmetries occur outside the rapidly-rotating
and strongly-sheared core. One consequence of these processes is that it is the larger-
scale asymmetries that have the main effect on the vortex motion. On account of the
filamentation process, there is a natural tendency for vortices to axisymmetrize dis-
turbances in their cores. The axisymmetrization process in rapidly-rotating vortices
is analyzed in more detail in section 4.1.

The analytic theory described above can be extended to account for higher-order
corrections to the vorticity asymmetry. These corrections involve higher-order az-
imuthal wavenumber asymmetries. Mathematically an azimuthal wavenumber-n vor-
ticity asymmetry has the form

ζa(r, λ, n) = ζ1(r, t) cos(nλ) + ζ2(r, t) sin(nλ) (n = 1, 2, . . .),

which may be written

ζa(r, λ, n) = ζn(r, t) cos(nλ + α). (5.26)
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Figure 5.8: Approximate trajectories of fluid parcels which, for a given radius, give
the maximum asymmetric vorticity contribution at that radius. The figures refer ro
the case of motion of an initially-symmetric vortex on a β-plane with zero basic flow
at (a) 1 h, (b) 24 h. The particles arc assumed to follow circular paths about the
vortex centre (e.g. AB) with angular velocity Ω(r), where Ω decreases monotonically
with radius r. Solid lines denote trajectories at 50 km radial intervals. Dashed
lines marked ’M’ and ’m’ represent the trajectories giving the overall axisymmetric
vorticity maxima and minima, respectively. These maxima and minima occur at the
positive and negative ends of the relevant lines.

The associated streamfunction asymmetry has a similar form:

ψa(r, λ, n) = ψn(r, t) cos(nλ + α),

where(see Appendix 3.4.1)

ψ0 =

∫ r

0

dp

p

∫ s

0

sζ0(s, t)ds

ψn =
1

2n

[
rn

∫ ∞

r

p1−nζn(p, t)dp− r−n

∫ r

0

p1+nζn(p, t)dp

]
, (n 6= 0).

The tracks obtained from the extended analytic theory agreed with considerable
accuracy with those obtained from a numerical solution of the problem to at least
72 h, showing that theory captures the essential features of the dynamics (see Smith
and Weber 1993).

5.3.3 The effects of horizontal shear and deformation

The analytic theory can be extended also to zonal basic flows of the form U =
(U(y, t), 0) (Smith, 1991) and to more general flows with horizontal deformation
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Figure 5.9: Analytically calculated absolute vorticity distribution at 24 h correspond-
ing with the vorticity asymmetry in the upper right panel of Fig. 5.5.

(Krauss et al. 1995). For simplicity we consider here the case where U is a quadratic
function of y only, i.e. U = Uo + U ′y + 1

2
U ′′y2. Let us partition the environmental

flow at time t into two parts: the initial zonal flow, U, and the part associated
with the vortex-induced asymmetries, Ua and define the corresponding vorticities:
Γ = k · ∇∧U and ζa = k · ∇∧Ua. Then, noting that U is normal to ∇(Γ + f), Eq.
(5.6) may be written:

∂ζa

∂t
= −us · ∇(Γ + f)− (U + Ua − c) · ∇ζs −Ua · ∇(Γ + f). (5.27)

Let us define c = Uc + c′, and U = Uc(t) + Uo, where Uc(t) is the speed of the
zonal flow at the meridional position of the vortex and Uo contains the meridional
variation of U, then Eq. (5.27) becomes

∂ζa

∂t
= −us · ∇(Γ + f)−Uo · ∇ζs + (Ua − c′) · ∇ζs −Ua · ∇(Γ + f). (5.28)

The first term on the right-hand-side of this equation represents the asymmetric
vorticity tendency, ∂ζa1/∂t, associated with the advection of the absolute vorticity
gradient of the basic flow by the symmetric vortex circulation. The second term,
∂ζa2/∂t, is the asymmetric vorticity tendency associated with the basic shear acting
on the symmetric vortex. The third term, ∂ζa3/∂t, is the asymmetric vorticity ten-
dency associated with the advection of symmetric vorticity by the relative asymmet-
ric flow; and the last term, ∂ζa4/∂t, is the asymmetric vorticity tendency associated
with the advection of the absolute vorticity gradient of the basic flow by the asym-
metric flow. Let ζan(n = 1 . . . 4) be the contribution to ζa from ∂ζan/∂t. Then ζa1



CHAPTER 5. TROPICAL CYCLONE MOTION 96

has an azimuthal wavenumber-1 structure like ζa in Eq. (5.13) and the solution has
the same form as (5.14), but with β replaced with the absolute vorticity gradient of
the background flow, β − U ′′.

Case I: Uniform shear

For a linear velocity profile (i.e. for uniform shear, U ′ = constant), k·∇Γ = −U ′′ = 0,
so that the main difference compared to the calculation in the previous section is the
emergence of an azimuthal wavenumber-2 vorticity asymmetry from the term ζa2,
which satisfies the equation

∂ζa2

∂t
= −Uo · ∇ζs = −U ′y

∂ζs

∂x
.

This result is easy to understand by reference to Figs. 5.10 and 5.11. The vorticity
gradient of the symmetric vortex is negative inside a radius of 255 km (say ro) and
positive outside this radius (Fig. 5.10). Therefore ∂ζs/∂x is positive for x > 0 and
r > ro and negative for x < 0 and r < ro. If U = U ′y, U∂ζs/∂x is negative in the
first and third quadrants for r > ro and positive in the second and fourth quadrants
(Figs. 5.11). For r < ro, the signs are reversed.

Figure 5.10: (left) Radial profile of vortex vorticity, ζ(r), corresponding with the
tangential wind profile in Fig. 5.3.

Figure 5.12 shows the calculation of ζa2 at 24 h when U ′ = 5 m s−1 per 1000
km. Since the vorticity tendency is relative to the motion of a rotating air parcel
(Eq. (4.1)), the pattern of ζa2 at inner radii is strongly influenced by the large radial
shear of the azimuthal wind and consists of interleaving spiral regions of positive and
negative vorticity. The maximum amplitude of ζa2 (1.1× 10−5 s−1 at 24 h) occurs at
a radius greater than ro. Note that azimuthal wavenumber asymmetries other than
wavenumber-1 have zero flow at the origin and therefore have no effect on the vortex
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Figure 5.11: Schematic depiction of the azimuthal wavenumber-2 vorticity tendency
arising from the term −U · ∇ζs = −U ′y∂ζs/∂x in the case of a uniform zonal shear
U = U ′y. (a) shows the sign of the vorticity gradient ∂ζs/∂x in each quadrant for
0 < r < ro and ro < r where ro is the radius at which the vorticity gradient dζs/dr
changes sign (see Fig. 5.11) and (b) shows the vorticity tendency −U∂ζs/∂x in the
eight regions.

motion. In the case of uniform shear, there is a small wavenumber-1 contribution to
the asymmetry from the term ζa4, which satisfies the equation

∂ζa4

∂t
= −Ua · ∇(Γ + f).

Case II: Linear shear

We consider now the case of a quadratic velocity profile (i.e. linear shear) in which
U ′ is taken to be zero ∂Γ/∂y = −U ′′ is nonzero. Linear shear has two particularly
important effects that lead to a wavenumber-1 asymmetry, thereby affecting the
vortex track. The first is characterized by the contribution to the absolute-vorticity
gradient of the basic flow (the first term on the right-hand-side of Eq. (5.28), which
directly affects the zero-order vorticity asymmetry, ζa1. The second is associated
with the distortion of the vortex vorticity as depicted in Fig. 5.13 and represented
mathematically by ζa2, which originates from the second term on the right-hand-side
of Eq. (5.28).

Vortex tracks

Figure 5.14 shows the vortex tracks calculated from the analytic theory of Smith
(1991) with the corresponding numerical calculations of Smith and Ulrich (1991).
The broad agreement between the analytical and numerical calculations indicates
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Figure 5.12: Asymmetric vorticity contribution for the case of a uniform zonal shear
with U ′ = 5 m s−1 per 1000 km. Contour interval is 5 × 10−6 s−1. Dashed lines
indicate negative values. The vortex centre is marked by a cyclone symbol.

Figure 5.13: Schematic depiction of the wavenumber-1 vorticity tendency arising
from the term −U · ∇ζs = −U∂ζs/∂x in the case of linear basic shear U = −1

2
U ′′y2.

(a) shows the profile U(y) and (b) shows the vorticity tendency −U∂ζs/∂x, in the
eight regions defined in Fig. 5.10. The sign of ∂ζs/∂x in these regions is shown in
Fig. 5.10a.

that the analytic theory captures the essence of the dynamics involved, even though
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the analytically-calculated motion is a little too fast. The eastward or westward
displacement in the cases with zonal shear are in accordance with expectations that
the vortex is advected by the basic flow and the different meridional displacements
are attributed to the wavenumber-1 asymmetry, ζa4 discussed above.

Panel (b) of Fig. 5.14 shows a similar comparison for two cases of a linear shear:
SNB with U ′′ = βo and β = 0; SHB U ′′ = 1

2
βo and β = 1

2
βo; and the case of zero basic

flow (ZBF) with β = βo. Here βo is the standard value of β. These three calculations
have the same absolute vorticity gradient, βo, but the relative contribution to it
from U ′′ and β is different. Note that the poleward displacement is reduced as U ′′

increases in magnitude. Again this effect can be attributed to the wavenumber-one
asymmetry ζa2 discussed above.

Figure 5.14: Analytically calculated vortex track (denoted by A) compared with
the corresponding numerical solution (denoted by N): (a) uniform shear flow cases
and [b) linear shear flow cases. Each panel includes the analytically and numerically
calculated track for the case of zero basic; flow (denoted ZBF). Cyclone symbols mark
the vortex position at 12-h intervals. (See text for explanation of other letters.)

5.4 The motion of baroclinic vortices

As a start to examining the motion of baroclinic vortices it is instructive to consider
first the vorticity tendency for a baroclinic vortex v(r, z) in a zonal shear flow U(z).

5.4.1 Vorticity tendency for a baroclinic vortex v(r, z) in a
zonal shear flow U(z).

Consider the velocity vector:

u = U(z)̂i + v(r, z)θ̂ = U cos θr̂ + (v − U sin θ)θ̂ (5.29)
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The vorticity in cylindrical coordinates is

ω =
1

r

(
∂uz

∂θ
− ∂ruθ

∂z

)
r̂ +

(
∂ur

∂z
− ∂uz

∂r

)
θ̂ +

1

r

(
∂ruθ

∂r
− ∂ur

∂θ

)
k̂,

so that for the velocity vector (5.29),

ω =

(
− ∂

∂z
(v − U sin θ)

)
r̂+

(
∂

∂z
U cos θ

)
θ̂ +

(
1

r

∂

∂r
r(v − U sin θ)− 1

r

∂

∂θ
U cos θ

)
k̂

or

ω =

(
dU

dz
sin θ − ∂v

∂z

)
r̂ +

dU

dz
cos θθ̂ +

1

r

∂rv

∂r
k̂

Let us write

ω =

(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk̂ (5.30)

Now, in cylindrical coordinates (see Batchelor, 1970, p602)

u.∇ω =
(
u.∇ωr − uθωθ

r

)
r̂ +

(
u.∇ωθ +

uθωr

r

)
θ̂ + (u.∇ωz) k̂

Then for the velocity vector (5.29),
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u.∇ω =

(
u.∇

(
ξ +

dU

dz
sin θ

)
− uθ

r

dU

dz
sin θ

)
r̂ +

(
u.∇ωθ +

uθ

r

(
ξ +

dU

dz
sin θ

))
θ̂ + (u.∇ζ) k̂

The three components of this equation are:

(
u.∇ξ − uθωθ

r

)
= U cos θ

∂

∂r

(
ξ +

dU

dz
sin θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
ξ +

dU

dz
sin θ

)
− (v − U sin θ)

r

dU

dz
cos θ

= U cos θ
∂ξ

∂r

(
u.∇ωθ +

uθωr

r

)
= U cos θ

∂

∂r

(
dU

dz
cos θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
dU

dz
cos θ

)
+

(v − U sin θ)

r

(
ξ +

dU

dz
sin θ

)

=
(v − U sin θ)

r
ξ

u.∇ωz = U cos θ
∂ζ

∂r
+

(v − U sin θ)

r

∂ζ

∂θ
= U cos θ

∂ζ

∂r

Therefore

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂ (5.31)

Now

ω.∇u =
(

ω.∇ur − ωθuθ

r

)
r̂ +

(
ω.∇uθ +

ωθur

r

)
θ̂ + (ω.∇uz) k̂. (5.32)

The first component of this equation is

ω.∇ur − ωθuθ

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

(
∂

∂r
(U cos θ)r̂ +

1

r

∂

∂θ
(U cos θ)θ̂ +

∂

∂z
(U cos θ)k̂

)
− v − U sin θ

r

dU

dz
cos θ

= −U

r

dU

dz
cos θ sin θ + ζ

dU

dz
cos θ − v − U sin θ

r

dU

dz
cos θ
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or, finally

ω.∇ur − ωθuθ

r
= ζ

dU

dz
cos θ − v

r

dU

dz
cos θ =

dv

dr

dU

dz
cos θ (5.33)

The second component of (5.33) is

ω.∇uθ +
ωθur

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂

∂r
(v − U sin θ)r̂ +

1

r

∂

∂θ
(v − U sin θ)θ̂ +

∂

∂z
(v − U sin θ)k̂

]
+

U cos θ

r

dU

dz
cos θ

=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂v

∂r
r̂− U

r
cos θθ̂ +

(
∂v

∂z
− dU

dz
sin θ

)
k̂

]
+

U

r

dU

dz
cos2 θ

=

(
ξ +

dU

dz
sin θ

)
∂v

∂r
− ζ

(
ξ +

dU

dz
sin θ

)
=

(
∂v

∂r
− ζ

) (
ξ +

dU

dz
sin θ

)
,

or, finally,

ω.∇uθ +
ωθur

r
= −v

r

(
ξ +

dU

dz
sin θ

)
(5.34)

The third component of (5.33) is simply

ω.∇uz = 0 (5.35)

The (5.32) may be written

ω.∇u =
dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂ (5.36)

∂ω

∂t
= −u·∇ω + ω·∇u

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r

(
ξ − dU

dz
sin θ

)
θ̂ + U cos θ

∂ζ

∂r
k̂

∂ω

∂t
= −

(
U cos θ

∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂

)
+

dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂

=

(
−U

∂ξ

∂r
+

dv

dr

dU

dz

)
cos θr̂−

[(
v

r
+

(v − U sin θ)

r

)
ξ − v

r

dU

dz
sin θ

]
θ̂−U cos θ

∂ζ

∂r
k̂,

or finally,

∂ω

∂t
=

(
−U

∂ξ

∂r
+

dv

dr

dU

dz

)
cos θr̂−

[(
2v

r
− U sin θ

r

)
ξ +

v

r

dU

dz
sin θ

]
θ̂ − U cos θ

∂ζ

∂r
k̂

(5.37)
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Special cases:

1. Uniform flow (U = constant), barotropic vortex, v = v(r) ⇒ ξ = 0

∂ω

∂t
= −U cos θ

∂ζ

∂r
k̂ ⇒ ∂ζ

∂t
= −U

∂ζ

∂x

In this case there is only vertical vorticity and this is simply advected by the
basic flow as discussed in Chapter 5.

2. No basic flow (U = 0), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −2v

r
ξθ̂

∂ξ

∂t
= 0,

∂η

∂t
= −2v

r
ξ,

∂ζ

∂t
= 0

In this case there are initially two components of vorticity, a radial component
and vertical vertical component, but in general, the vortex does not remain
stationary as there is generation of toroidal vorticity. The exception is, of
course, when the vortex is in thermal-wind balance in which case there is
generation of toroidal vorticity of the opposite sign by the horizontal density
gradient so that the net rate-of-generation of toroidal vorticity is everywhere
zero.

3. Uniform flow (U = constant), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −U cos θ

∂ξ

∂r
r̂−

(
2v

r
− U sin θ

r

)
ξθ̂ − U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U

∂ξ

∂x

∂η

∂t
= −

(
2v

r
− U sin θ

r

)
ξ

∂ζ

∂t
= −U

∂ζ

∂x

Again there are initially two components of vorticity, a radial component and
vertical vertical component, and again there is generation of toroidal vorticity
unless the vortex is in thermal-wind balance. However, even in the latter
case there would appear to be a generation of toroidal vorticity at the rate
(U sin θ/r)ξ. It can be shown that this rate-of-generation is associated with the
coordinate system represented by the unit vectors r̂, θ̂, k̂, is fixed (see Exercise
5.1). Thus as the vortex moves away from the origin of coordinates, the radial
component of vorticity in the moving frame projects onto the θ̂-component in
the fixed frame.
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4. Uniform shear flow (dU/dz = constant = U ′), barotropic vortex, v = v(r) ⇒
ξ = 0

∂ω

∂t
=

dv

dr

dU

dz
cos θr̂ +

v

r

dU

dz
sin θθ̂ + U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U

∂ξ

∂x
+

dv

dr

dU

dz
cos θ

∂η

∂t
=

v

r

dU

dz
sin θ

∂ζ

∂t
= −U

∂ζ

∂x

Translation of the balanced density field

Let ρ = p0(r, z) at time t = 0.
Then

∂ρ

∂t
= −∇ · (ρu) = −u · ∇ρ− ρ(∇ · u).

Now the velocity field u = (U cos θ, v − U sin θ, 0) is nondivergent (∇ · u = 0)
and therefore

∂ρ

∂t
= −U cos θ

∂ρ

∂r
− (v − U sin θ)

r

∂ρ

∂θ
.

The second term on the right-hand-side is zero because ρ is dependent of θ whereupon

∂ρ

∂t
= −U

∂ρ

∂x

and the density field is simply advected at speed U .

Exercise 5.1 Show that the term (U sin θ/r)ξ in Eqs. (??) is the rate-of-

generation of toroidal vorticity in the fixed coordinate system represented by the
unit vectors r̂, θ̂, k̂ due to the subsequent displacement of the vortex centre from the
coordinate origin.

Exercise 5.2 Show that

∂

∂r
=

∂

∂x

∂x

∂r
+

∂

∂y

∂y

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

and
1

r

∂

∂θ
=

1

r

∂

∂x

∂x

∂θ
+

1

r

∂

∂y

∂y

∂θ
= − sin θ

∂

∂x
+ cos θ

∂

∂y
,

Deduce that
∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,
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and
∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Figure 5.15: See text for discussion.

Solution to Exercise 5.1
Let the vortex be centred at the origin at time t = 0 and at a position Ut from the
origin at time t (Fig. 5.15). At time t, the radial component of vorticity is
ω′rr̂

′ = ξr̂′ and we are interested in the projection of this vector in the λ̂
′
direction.

In particular we want to calculate its rate of change

Λ =
d

dt
(ξr̂′ · λ̂) = ξ

d

dt
sin φ

Consider r ∧ r′ = |r||r′| sin φk̂, where k̂ is a vector normal to the plane of r and r̂′

and note that r′ = r−Xi. Then

k̂ sin φ =
Xi ∧ r′

|r| |r′| = k̂
X

|r| sin λ

so that
d

dt
sin φ =

1

r
sin λ

dX

dt
=

U

r
sin λ

and therefore

Λ =
U

r
ξ sin λ

as required.
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5.4.2 The effects of vertical shear

Discuss Jones (1995, 2000a, 2000b, 2004), Smith and Ulrich (2000) and Reasor and
Montgomery (2004).
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5.5 Appendices to Chapter 5

5.5.1 Derivation of Eq. 5.16

We require the solution of ∇2ψa = ζ, when ζa(r, θ) = ζ̂(r)einθ. Now

∇2ψa =
∂2ψa

∂r2
+

1

r

∂ψa

∂r
+

1

r2

∂2ψa

∂θ2
= ζ̂(r)einθ

Put ψ = ψ̂(r)einθ, then

d2ψ̂

dr2
+

1

r

dψ̂

dr
− n2

r2
ψ̂ = ζ̂(r). (5.38)

When ζ̂(r) = 0, the equation has solutions ψ̂ = rα where

[α(α− 1) + α− n2]rα−2 = 0,

which gives
α2 − n2 = 0 or α = ±n.

Therefore, for a solution of (5.38), try ψ̂ = rnφ(r). Then

ψr = rnφr + nrn−1φ, ψrr = rnφrr + 2nrn−1φr + n(n− 1)rn−2φ (5.39)

whereupon (5.38) gives

rnφrr + 2nrn−1φr + n(n− 1)rn−2φ

+ rn−1φr + nrn−2φ− n2rn−2φ = ζ̂ ,

or
rnφrr + (2n + 1)rn−1φr = ζ̂ .

Multiply by rβ and choose β so that n + β = 2n + 1, i.e., β = n + 1. Thus rn+1 is
the integrating factor. Then

d

dr

[
r2n+1φ(r)

]
= rn+1ζ̂(r), (5.40)

which may ne integrated to give

r2n+1dφ

dr
=

∫ ∞

r

pn+1ζ̂(p)dp + A,

where A is a constant. Therefore

dφ

dr
=

1

r2n+1

∫ ∞

r

pn+1ζ̂(p)dp +
A

r2n+1
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Figure 5.16: The domain of integration for the integral (5.41) is the shaded region.

Finally,

φ =

∫ ∞

r

dq

q2n+1

∫ ∞

q

pn+1ζ̂(p)dp +

∫ ∞

q

Adq

q2n+1
+ B, (5.41)

where B is another another constant. The domain of the double integral is the shaded
region shown in Fig. 5.16 in which p goes from q to ∞ then q goes from r to ∞. If
we change the order of integration in (5.41), q goes from r to p and then p goes from
r to ∞, i.e.

φ =

∫ ∞

r

pn+1ζ(p)dp

∫ p

r

dq

q(2n+1)
− A

2nr2n
+ B

=
1

2n

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
1

r2n
+ B − 1

2n

∫ r

0

p1−nζ̂(p)dp.

Finally

ψ̂(r) = − rn

2n

∫ r

0

p1−nζ̂(p)dp + Brn +
1

2nrn

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
.

Now ψ̂(r) finite at r = 0 requires that

A =

∫ ∞

0

pn+1ζ̂(p)dp

and ψ̂(r) finite as r →∞ requires that

B =

∫ ∞

0

p1−nζ̂(p)dp
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Therefore

ψ̂(r) = − rn

2n

∫ ∞

r

p1−nζ̂(p)dp− r−n

2n

∫ 0

r

pn+1ζ̂(p)dp, (5.42)

as required.

5.5.2 Solution of Eq. 5.25

The asymmetric flow Ua is obtained from Eqs. (5.17) and (5.18) and c is obtained
from (5.21). We can calculate the streamfunction Ψ′

a of the vortex-relative flow
Ua − c, from

ψ′n = ψa − ψc,

where

ψ′c = r(Va cos λ− Ua sin λ) = r

[
∂Ψ1

∂r

∣∣∣∣
r=0

cos λ +
∂Ψ2

∂r

∣∣∣∣
r=0

sin λ

]
. (5.43)

Then using (5.15), (5.16), (5.20) and (5.43) we obtain

ψ′a = Ψ′
1(r, t) cos θ + Ψ′

2(r, t) sin θ, (5.44)

where

Ψ′
n(r, t) = Ψn − r

[
∂Ψn

∂r

]

r=0

, (n = 1, 2)

=
1

2
r

∫ r

0

(
1− p2

r2

)
ζn(p, t)dp. (5.45)

After a little more algebra it follows using (5.17), (5.18), (5.21) and (5.45) that

−(Ua − c) · ∇ζs = χ1(r, t) cos λ + χ2(r, t) sin λ, (5.46)

where [
χ1(r, t)
χ2(r, t)

]
=

1

r

dζs

dr
×

[
ψ′2(r, t)
−ψ′1(r, t)

]
. (5.47)

Now using (5.46) and (5.47), Eq. (5.45) can be written as

dζa1

dT
=

1

r

dζs

dr
(Ψ′

2(r, t) cos λ−Ψ′
1(r, t) sin λ) ,

where d/dt denotes integration following a fluid parcel moving in a circular path of
radius r about the vortex centre with angular velocity Ω(r). It follows that

ζa1 =
1

r

dζs

dr

∫ t

0

[Ψ′
2(r, t

′) cos λ(t′)−Ψ′
1(r, t

′) sin λ(t′)]dt′,
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where λ(t′) = λ− Ω(r)(t− t′). Using Eq. (5.45), this expression becomes

ζa1 =
1

2

dζs

dr

∫ t

0

∫ r

0

(
1− p2

r2

)
× [ζ2(p, t

′) cos λ(t′)− ζ1(p, t
′) sin λ(t′)] dpdt′,

and it reduces further on substitution for ζn from (5.14) and the above expression
for λ(t′) giving

ζa1 =
1

2
β

dζs

dr

∫ r

0

p

(
1− p2

r2

)

×
∫ t

0

[cos {λ− Ω(r)(t− t′)} − cos {λ− Ω(r)(t− t′)− Ω(p)t′}]dt′dp.

On integration with respect to t′ we obtain

ζa1(r, θ, t) = ζ11(r, t) cos λ + ζ12(r, t) sin λ (5.48)

where

ζ1n(r, t) =

∫ t

0

χn(r, t)dt

= −1

2
β

dζs

dr

∫ r

0

p

(
1− p2

r2

)
ηn(r, p, t)dp, (5.49)

and

η1(r, p, t) =
sin {Ω(r)t}

Ω(r)
− sin {Ω(r)t} − sin {Ω(p)t}

Ω(r)− Ω(p)
, (5.50)

η2(r, p, t) =
1− cos {Ω(r)t}

Ω(r)
+

cos {Ω(r)t} − cos {Ω(p)t}
Ω(r)− Ω(p)

, (5.51)

The integrals in (5.50) can be readily evaluated using quadrature.



Chapter 6

VORTEX ASYMMETRIES,
VORTEX WAVES

Observations of tropical cyclones indicate that storms that may be closely approxi-
mated as axisymmetric are rare - such storms tend to be the most intense and then it
is usually only the inner core region that is approximately axisymmetric. The outer
region of storms is invariably asymmetric, and weaker storms are usually highly
asymmetric. In the previous chapter we saw how vortex asymmetries, whether they
are considered a part of the vortex or a part of its environment, can influence the
vortex motion.

In the following section we study the motion of initially asymmetric vortices on
an f -plane. The issues to be addressed are relevant to the problem of initializing
tropical cyclone forecast models as well as to an understanding of possible track
changes as cyclones develop new asymmetries or as existing asymmetries evolve.

Asymmetries have implications not only for tropical cyclone motion, but also for
intensification. The processes involved are intimately tied up with wave motions.
Therefore in later sections we examine the dynamics of waves on vortices.

6.1 Axisymmetrization

We construct an asymmetric vortex by adding a vortex dipole to the initial vorticity
distribution shown in Fig. 5.11. The vortex dipole has the form

ζd(r, λ) = ζD(r/d)2exp(−r2/d2)cos(λ− α), (6.1)

where ζD, d and α are prescribed constants characterizing the dipole strength, scale
and orientation. Thus the vorticity maximum and minimum of the dipole occur at
(d, α) and (d, π + α), respectively.

We consider four calculations with α = 0 so that the dipole is oriented west-east.
In the first calculation, S1, d =

√
2 and ζD = 0.2ζo, the latter being the maximum

value of zeta in the symmetric vortex. In the second calculation, S2, d = 2
√

2 and
ζD = 0.1ζo so that the velocity at the origin associated with the dipole is the same as

111
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in S11. These two calculations are carried out on an f -plane. The third and fourth
calculations, S3 and S4, are the same as S1 and S2, but are for a β-plane. The
calculations are carried out numerically by a direct integration of Eq. 5.1 with the
initial vorticity distribution (symmetric vortex plus dipole) described above. The
Kasahara-Platzman partitioning scheme is used to analyzing the subsequent vortex
evolution so that the asymmetric component of the vortex is regarded as a part of
the environment, even at the initial instant. Figure 6.1 shows the evolution of the
asymmetric vorticity component and associated streamfunction at selected times for
the calculations S1. It can be seen that within a circle of radius about 2rmax centred
on the vortex, the asymmetric vorticity field undergoes rapid distortion due to the
relatively large shear of the tangential wind field in this region. For example, for
the flow parameters chosen, the angular velocity of the symmetric vortex decreases
monotonically with radius (see Fig. 5.3b) so that in 6 h an air parcel of 20 km radius
completes approximately 2-4 revolutions compared with 1-4 revolutions at 100 km
(i.e. rmax) and 0-5 revolutions at 200 km. Outside this circle, the distortion of the
asymmetry proceeds more slowly. Initially, the asymmetric flow across the vortex is
towards the south Fig. 6.1a, but its direction rotates counterclockwise with the gyres
of the asymmetric streamfunction as the vorticity asymmetry is rotated. Therefore
the vortex track forms a counterclockwise arc as shown in Fig. 6.2a.

As the asymmetric vorticity distribution is wound around the vortex by the angu-
lar shear of the tangential wind, the associated flow is reduced in strength and after
about 12 h, the vortex essentially stalls. The reduction in strength of the asymmet-
ric flow as the asymmetric vorticity field suffers angular shear can be understood in
terms of an analytic solution for the problem in which the motion of the basic vortex
is ignored. Then, in the same spirit as the calculation leading to (5.13), we can show
that the asymmetric vorticity distribution at time t is given by

ζa(r, λ, t) = ζD(r/d)2exp(−r2/d2)cos(λ− Ω(r)t). (6.2)

For an unbounded domain, we can solve the Poisson equation for the associated
streamfunction using 5.15. Using complex notation the velocity of the asymmetric
flow across the vortex centre, Uo + iVo, may be shown to have the form

Uo + iVo = −iζDrmax

∫ ∞

0

(ηs)2 exp[−η2s2 + i(Vmaxt/rmax)Ω
′(s)]ds, (6.3)

where η = rmax/d and Ω′(s) = rmaxΩ(r)/Vmax. For large values of t (i.e. t ≥
rmax/Vmax = 42 min), the integrand in (6.3) oscillates rapidly. As t increases, these
oscillations become more numerous and as a result of cancellation the integral itself
decreases monotonically in value.

Figure 6.3 shows the evolution of the asymmetric vorticity field for calculation
S2 and Fig 6.2b shows the vortex track in this simulation. As expected, since the
asymmetry is concentrated at a larger radius than S1, it is less rapidly wound up

1See Smith et al. (1990), Appendix B, Eq. (B8)
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Figure 6.1: Evolution of the asymmetric vorticity field (ζa) and corresponding stream-
function field for the initially asymmetric vortex on an f -plane in the case of small-
scale asymmetry (calculation S1), Shown are (a) the initial fields, and the fields at
(b) 6 h and (c) 12 h. Note that only one quarter of the total flow domain is shown.
Contour intervals are 2 × 10−5 s−1 for ζa and 5 × 104 m2 s−1 for ψa. Zero contours
have been excluded.

by the radial shear of the basic vortex. Accordingly, the asymmetric component of
flow across the streamfunction centre rotates less rapidly and decays less rapidly in
strength. As a result, the vortex moves farther from its initial position than in S1
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Figure 6.2: Tracks of initially asymmetric vortices in the calculations Sl to S4 defined
in the text. (a) Small asymmetry, f -plane; (b) large asymmetry, f -plane; (c) small
asymmetry, β-plane; and (d) large asymmetry, β-plane.

and its track rotates only slowly towards the east after the first three hours, As might
be anticipated from the results of section 3.3.2. the effect of a nonzero beta would
be to induce an east-west vorticity tendency in addition to the existing asymmetry.
This is confirmed by the calculations S3 and S4, the vortex tracks for which are
shown in panels (c) and (d) of Fig. 6.2. In S3 the vortex no longer stalls after 12 h,
but recurves to move along a north-westwards track as the beta-induced asymmetries
begin to dominate. In S4, the beta effect becomes important also, but not so rapidly,
and again the track turns north-westwards as it does so. These calculations show
that the importance of vortex asymmetry on the track depends strongly on the scale
of the asymmetry. The larger this scale, the less rapidly can the asymmetry be wound
up by the vortex circulation and the more persistent is the effect of the asymmetry.
It is evident that initial asymmetries concentrated outside the radius of maximum
tangential wind can have a significant effect on subsequent vortex positions and would
need to be resolved or somehow represented in tropical-cyclone forecast models.

The asymmetries we investigated analytically in Chapter 5 were associated wholly
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Figure 6.3: Evolution of the asymmetric vorticity field (Γ) for the initially asymmetric
vortex on an f -plane in the case of large-scale asymmetry (simulation S2). Shown
are (a) the initial field, and the fields at (b) 6 h and (c) 12 h. Contour interval is
1 × 10−5 s−1. Note: the domain size is twice that shown in Fig. 11. Zero contours
have been excluded.

with advective processes since we made the assumption that to a first approximation,
the vorticity perturbation is advected by the tangential velocity of the initial axisym-
metric vortex. This assumption precludes the existence of waves that propagate on
the vorticity gradient of the basic vortex. However, in some situations, wave mo-
tions may be important to the dynamics and in this section we review the pertinent
aspects of waves on vortices. We begin with two-dimensional non-divergent inviscid
flow on an f -plane as the prototype model and go on in later sections to examine
waves in a shallow-water model.
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6.2 Vortex Rossby waves

We consider here the linear theory of waves on a circular vortex in gradient balance.
In a stationary cylindrical coordinate-system, the linearized vorticity-equation is

(
∂

∂t
+

V

r

∂

∂λ

)
ζ ′ − 1

r

∂ψ′

∂λ

dζ̄a

dr
= 0, (6.4)

where ψ′ denotes the perturbation streamfunction, ζ ′ = ∇2ψ′ is the perturbation vor-
ticity, V (r) the basic-state tangential velocity at radius r, and ζ̄a = f+(1/r)d(rV )/dr
the basic-state absolute vorticity. If f is a constant, it does not appear explicitly
in the problem. When (6.4) has been solved for ψ′, the perturbation radial and
azimuthal winds are obtained from

u′ = −1

r

∂ψ′

∂λ
, v′ =

∂ψ′

∂r
. (6.5)

The solution to (6.4) may be obtained by an azimuthal Fourier analysis. Let

ψ′ = ψ̂n(r, t)einλ,

where ψ̂n(r, t) denotes the Fourier amplitude of the azimuthal wave-number n, and
let Ω = V/r be the local angular rotation rate of the basic-state vortex. Then the
linearized vorticity equation in Fourier space becomes

(
∂

∂t
+ inΩ

) [
1

r

∂

∂r

(
r
∂ψ̂n

∂r

)
− n2

r2
ψ̂n

]
− in

r
ψ̂n

dζ̄a

dr
= 0. (6.6)

Under certain circumstances n turns out to be complex, in which case there exist
unstable solutions. It can be shown that a necessary condition for the existence
of unstable solutions is that the radial gradient of the basic state vorticity, dη̄/dr
changes sign somewhere within the flow. We defer consideration of the unstable case
until subsection 4.x.y.

A formal solution to the general initial value problem for Eq. (6.6) may be
obtained using Laplace transform techniques. The Laplace transform of an arbitrary
function χ(r, t) is defined by

χ̂(r, s) =

∫ ∞

0

e−stχ(r, t)dt, (6.7)

and if χ̂(r, s) is known, the inverse transform is obtained as a contour integral in the
complex plane:

χ(r, t) =
1

2πi

∫ c+i∞

c−i∞
estχ̂(r, s)dt, (6.8)

where c is a constant so that the contour of integration in the complex s-plane lies to
the right of all singularities of χ̂(r, s). It is easy to show that the Laplace transform
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of ∂χ/∂t is sχ̂(r, s) − χ(r, 0) and it follows that the Laplace transform of Eq. (6.6)
satisfies the ordinary differential equation

(s + inΩ(r))

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ̂(r, s)−in

dη̄

dr
ψ̂(r, s) =

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ(r, 0)

(6.9)
Dividing by s + inΩ(r) and noting that the right-hand-side of (6.9) is the initial
vorticity ζ̂o of the n-th Fourier component, we obtain

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ̂(r, s)− in

dη̄

dr

ψ̂(r, s)

(s + inΩ(r))
=

ζ(r, 0)

(s + inΩ(r))
(6.10)

In principle, when this equation has been solved for ψ̂(r, s), the inverse transform
must be obtained for ψ(r, t). The transform involves the evaluation of contour inte-
grals in the complex plane. From the calculus of residues we know that the general
solution consists of a sum of discrete exponentials (or normal modes) associated with
the zeros of the Wronskian together with an integral along branch cuts associated
with the zeros of (s + inΩ(r)) that characterizes the continuous spectrum. Explicit
solutions have been obtained only in a few special cases, but an examination of these
cases is instructive.

Case I: Bounded Rankine vortex: V = Γ/r, Ω = Γ/r2, Γ = constant, a ≤
r ≤ b. In this case dζ̄a/dr = 0 and Eq. (6.6) becomes

(
∂

∂t
+

inΓ

r2

) [
1

r

∂

∂r

(
r
∂ψ̂n

∂r

)
− n2

r2
ψ̂n

]
= 0. (6.11)

The inverse Laplace transform of (6.11) is

[
∂

∂r

(
r

∂

∂r

)
− n2

r

]
ψ(r, t) = rζ(r, 0)e−iant/r2

. (6.12)

The solution of this equation in the domain a ≤ r ≤ b is

ψ(r, t) =

∫ b

a

G(r, x)ζ(r, 0)e−iant/x2

xdx, (6.13)

where the Green’s function is given by

G(r, x) =
1

2nrn(a2n − b2n)

{
(xn − b2nx−n)(a2n − r2n), a ≤ r ≤ x
(xn − a2nx−n)(b2n − r2n), x ≤ r ≤ b

(6.14)

Finally, the Fourier inversion for wavenumber n is

ψn(r, λ, t) = einλ

∫ b

a

G(r, x)ζ(r, 0)e−iant/x2

xdx. (6.15)
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Figure 6.4: Perturbation streamfunction field for ζ(r, 0) = 1/r3 for the hounded
Rankine vortex in the region a = 1, b = 10. The columns show contours at times
t = 0, t = 3.6 and t = 7.2, respectively. Panels (a)-(c) show contours for n = 1 where
the contour interval is 1.1× 10−2. Panels (d)-(f) show contours for n = 2 where the
contour interval it 5.67 × 10−3. Panels (g)-(i) show contours for n = 3 where the
contour interval is 3.31× 10−3.

Some solutions for various initial distributions of ζ(r, 0) and n are given by Smith
and Montgomery (1995). Figure 6.4 shows shows the streamfunction fields for an
upright distribution of initial vorticity ζ(r, 0) = 1/r3 and Fig. 6.5 shows the corre-
sponding vorticity fields. The rows represent wavenumbers n = 1, 2 and 3 respec-
tively, while the columns designate times t = 0, t = 3.6 and t = 7.2, respectively.
These figures show how the initial disturbances are sheared out preferentially in the
inner region of the vortex by the large angular shear of the vortex. However, unlike
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in the calculations in Chapter 5, wave dynamics are involved on account of the term
u(dη̄/dr) that is retained at first-order in Eq. (6.4). The solutions are cylindrical ana-
logues of plane-wave solutions describing sheared disturbances in rectangular simple
shear flow (see e.g. Smith and Montgomery, 1995). Physically pertinent properties
of these solutions, such as the dependence of integrated kinetic energy on azimuthal
wave-number, are examined by Smith and Montgomery op. cit..

Figure 6.5: Perturbation vorticity-field corresponding to Fig. 6.4. The contour
interval is 6.9× 10−2.
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Case II: Unbounded Rankine vortex: ζ̄a discontinuous at r = rmax

The Rankine vortex is defined by the profile

V (r) =

{
r/a, r ≤ a,
a/r, a ≤ r,

(6.16)

where a is the radius of maximum winds. The corresponding profile of basic-state
vorticity is

ζ̄(r) =

{
2/a, r < a,
0, a < r,

(6.17)

The profile of absolute vorticity is

ζ̄a(r) =

{
Ro−1 + 2/a, r < a,
Ro−1, a < r,

(6.18)

where Ro is the Rossby number = Vm/Rm. The discontinuity in the mean-state
vorticity at r = a effectively introduces another boundary to the system. Since
this boundary lies in the interior of the fluid, kinematic and dynamic boundary
conditions must be satisfied at the disturbed interface r = a + η, where η is the
interface displacement. The kinematic boundary condition requires that the normal
velocity be continuous at r = a + η while the dynamic boundary condition requires
that the pressure be continuous at this radius. Consistent with the linearization
of the equations, the matching conditions can be evaluated at r = a. Once u is
determined, the evolution of the disturbed interface may be found by integrating

(
∂

∂t
+

V

r

∂

∂λ

)
η = u (6.19)

for η at r = a.
For the full Rankine vorticity profile (6.17) the linearized vorticity equation (6.4)

is modified to (
∂

∂t
+

V

r

∂

∂λ

)
ζ = 0 r 6= a. (6.20)

To solve (6.20), the discontinuity in the basic-state vorticity at r = a must be
accounted for. Since the problem is linear, the superposition principle may be used
to separate the solution into two parts by letting ζ = ζs + ζ1, where ζs. is defined to
be smooth for all r and ζ1 accounts for the discontinuity in the basic-state vorticity
at r = a. The vorticity equation (6.20) is then split into two parts

(
∂

∂t
+

V

r

∂

∂λ

)
ζs = 0 ∀r (6.21)

(
∂

∂t
+

V

r

∂

∂λ

)
ζ1 = 0 r 6= a. (6.22)
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Equation (6.21) is formally identical to the system solved in Case I, but with the
boundary conditions cited above. The corresponding solution in Fourier space is

ψ̂s(r, t) =

∫ ∞

0

G(r, ρ)ζ̂s0(ρ)e−inV/ρρdρ (6.23)

where the appropriate Green’s function is

G(r, t) = − 1

2n

{
ρ−nrn, 0 ≤ r ≤ ρ
ρnr−n, ρ ≤ r ≤ ∞ (6.24)

and ζ̂s0(ρ) is the smooth component of ζ̂ throughout the vortex at time t = 0.
The Fourier-space equivalent to (6.22) is

(
∂

∂t
+

inV

r

)
ζ̂1 = 0, r 6= a. (6.25)

Anticipating that the solution to (6.25) will yield the discrete normal modes which
are irrotational on both sides of the mean-state vorticity discontinuity, ζ̂1 is assumed
to be separable and of the form

ζ̂1 = γ(t)δ(r − a). (6.26)

Here, γ is an undetermined temporal multiplier for ζ̂1, and δ(r−a) is the Dirac delta
function. In terms of the perturbation streamfunction, (6.26) becomes

∇2ψ̂1 = γ(t)δ(r − a). (6.27)

The streamfunction is also assumed to be separable and of the form ψ̂1 = γ(t)Ψ̂1(r).
Thus, (6.27) becomes

(
1

r

d

dr

(
r

d

dr

)
− n2

r2

)
Ψ̂1 = δ(r − a). (6.28)

For r 6= a, (6.28) is Euler’s equation. Two conditions are needed to match the
solutions in each region across r = a. The first is the kinematic boundary condition
requiring that the radial velocity u be continuous at r = a. Consequently, the Fourier
streamfunction-amplitude must be continuous across r = a. The second condition
results from integrating (5.12) over a small interval that includes r = a. This yields
the following jump condition for ψ̂1

d

dr
Ψ̂1r(a

+)− d

dr
Ψ̂1r(a

−) = 1. (6.29)

Applying the boundary conditions, and the continuity and jump conditions at r = a,
yields

Ψ̂1 = − 1

2n

{
a−nrn, 0 ≤ r ≤ a
anr−n, a ≤ r ≤ ∞,

(6.30)
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To complete the derivation, γ must be determined. The remaining constraint is the
dynamic boundary condition which requires that the pressure be continuous at r = a.
In Fourier space, the azimuthal-momentum equation is given by

∂v̂

∂t
+

inV

r
v̂ + η̄û = −in

r
p̂. (6.31)

Evaluating (6.31) on each side of r = a and subtracting gives

∂

∂t

(
v̂(a+)− v̂(a−)

)
+

in

a

(
v̂(a+)− v̂(a−)

)− 2

a
û(a) = 0. (6.32)

In terms of the total streamfunction, equation (6.32) becomes

∂

∂t

(
∂ψ̂

∂r
(a+)− ∂ψ̂

∂r
(a−)

)
+

in

a

(
∂ψ̂

∂r
(a+)− ∂ψ̂

∂r
(a−)

)
+

2in

a2
ψ̂(a) = 0. (6.33)

Now, from the superposition principle, ψ̂ = ψ̂s + γΨ̂1, where ψs and its derivatives
are everywhere smooth by construction. Since Ψ1 is continuous but has a unit jump
in its derivative across r = a, equation (6.33) simplifies to

dγ

dt
+

i

a
(n− 1)γ = −2in

a2
ψ̂s(a, t) (6.34)

a first-order linear differential equation for γ. Upon multiplying through by integrat-
ing factor exp{i(n− 1)t/a} and substituting for ψ̂s(a, t), equation (6.34) becomes

d

dt
(γei(n−1)t/a) = −2in

a2

∫ ∞

0

G(a, ρ)ζ̂s0e
{i(n−1)/a−inv̄/ρ}tρdρ. (6.35)

Integrating in time and then multiplying through by exp{−i(n− 1)t/a} gives

γ(t) = −2n

a

∫ ∞

0

G(a, ρ)ζ̂s0

(n− 1− anv̄/ρ)
e−inv̄/ρρdρ + c1e

−1(n−1)t/a (6.36)

where c1 is the constant of integration at t = 0. Equation (6.36) then yields

γ(t) = −2n

a

∫ ∞

0

G(a, ρ)ζ̂s0

(n− 1− anv̄/ρ)
e−inv̄t/ρρdρ

+

(
γ0 +

2n

a

∫ ∞

0

G(a, ρ)ζ̂s0

(n− 1− anv̄/ρ)
ρdρ

)
e−i(n−1)t/a (6.37)

where γ0 is the initial amplitude of the normal-mode (Rossby) edge-wave associated
with the radial vorticity-gradient of the Rankine vortex. The Fourier streamfunction-
amplitude, ψ̂, is thus

ψ̂ =

∫ ∞

0

G(r, ρ)ζ̂s0e
−inv̄t/ρρdρ
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− 2n

a
Ψ̂1

∫ ∞

0

G(a, ρ)ζ̂s0

(n− 1− anv̄/ρ)
e−inv̄t/ρρdρ

+ Ψ̂1

(
γ0 +

2n

a

∫ ∞

0

G(a, ρ)ζ̂s0

(n− 1− anv̄/ρ)
ρdρ

)
e−i(n−1)t/a (6.38)

where G is given by (eq4.23) and Ψ̂1 is given (eq4.29). To obtain the physical-space
streamfunction, the inverse Fourier transform must be applied to (6.38).

Equation (6.38) may be given a simple interpretation. The first line may he iden-
tified with the continuous-spectrum solution and represents the unbounded analogue
of the solution presented in Case I. The second line is a conversion term that transfers
a portion of the kinetic energy from the continuous-spectrum solution into the dis-
crete mode (third of the three terms on the right-hand side of (6.38)). Note that even
with no normal-mode component initially, i.e. γo = 0, the continuous-spectrum solu-
tion always projects onto the normal mode at later times provided the integral does
not vanish (sec Fig. 18; cf, Farrell, 1984). For n 6= 1, the discrete modes rotate more
slowly than the vortex and represent retrogressing Rossby edge-waves at r = a + ε.
It may he shown that, in the absence of perturbation vorticity inside the radius of
maximum winds, as t → ∞ only the edge-wave component remains. In particular,
the asymptotic solution for n = 1 is the non-rotating normal-mode associated with a
translation of the basic-state vortex. On the other hand, for non-zero perturbation
vorticity inside the radius of maximum winds, the asymptotic solution for n = 1 has
an oscillatory component. In hurricanes, where the basic-state angular velocity has
a small, but generally non-zero radial gradient inside the radius of maximum winds,
as t → ∞ the latter effect would probably be of little significance. At early times,
however, the transient wavenumber-one component could produce a cycloidal track
in the fully non-linear formulation.

Explicit solutions have been constructed for an unbounded Rankine-vortex, wherein
η̄ experiences a finite jump at the radius of maximum winds, but is otherwise uni-
form inside and outside this radius (section 5 of Smith and Montgomery 1995).
In this model the solution is a superposition of shear-wave (continuous spectrum)
components and Rossby edge-wave (discrete spectrum) components that propagate
azimuthally, at a slower speed than the vortex. However, because these waves do not
propagate radially, they are not able to transport energy out of the vortex core.

Case III: Unbounded Rankine vortex: ζ̄a has multiple discontinuities

An extension of the unbounded-vortex model of SM allows multiple discontinuities in
ζ̄. With more than one discontinuity, interference effects can arise. As an example,
consider the simplest case of a three-region model in which the innermost vorticity
ζ̄1, is greater than the intermediate vorticity ζ̄2, which is greater than the outermost
vorticity ζ̄3. Such a distribution can be regarded physically as a three-region ap-
proximation of a vortex monopole (or hurricane) possessing a finite transition region
between its rapidly rotating core and its slowly rotating environment. Because the
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Figure 6.6: (a) Symmetric tangential winds V; for the full Rankine vortex; (b) cor-
responding absolute vorticity using an inverse Rossby number of 0.1.

generalized radial gradient of vorticity is non-positive, the vortex is exponentially
stable. If the initial condition consists of no exterior edge-wave, but consists of
smooth disturbance-vorticity in r1 ≤ r ≤ r2, some portion of the energy of the ini-
tial disturbance may be permanently transferred to the exterior edge-wave. Sheared
disturbances play an essential role in this transfer process, for without them the
disturbance energy as t → ∞ resides solely in the interior edge-wave. Keeping the
limitations of the three-region model in mind, we expect that the continuous model
may possess an analogous mechanism for transferring energy outwards.

6.3 Free waves on a resting basic state

The following discussion is based on that of Montgomery and Lu (1997). We consider
small-amplitude waves in rotating shallow layer of water. If the curvature of the free
surface is neglected, the linearized shallow-water equations in cylindrical coordinates
on an f -plane are

∂u′

∂t
− fv′ + g

∂h′

∂r
= 0, (6.39)
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Figure 6.7: Perturbation streamfunction forced by initial vorticity-profile ζo =
1/(r + 1)3. Panels (a) and (b) are for wave number n = 1 and the contour in-
terval is 1.59 × 10−2. Panels (c) and (d) are for n = 3 and the contour interval is
1.06 × 10−3 The columns are for times t = 0.0 and t = 7.2, respectively. Solid lines
denote ψ ≥ 0; dotted lines denote ψ ≤ 0.

∂v′

∂t
+ fu′ +

g

r

∂h′

∂λ
= 0, (6.40)

∂h′

∂t
+ H

(
1

r

∂

∂r
(ru′) +

1

r

∂v′

∂λ

)
= 0. (6.41)

Here, H is the depth of the fluid at rest, h′ is surface-height perturbation, and (u′, v′)
are perturbation radial and tangential winds, respectively.
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The flow domain is the circular region 0 ≤ r ≤ a. Perturbation quantities are
assumed finite at r = 0, while the height perturbation is assumed to vanish at r = a.
The latter condition is chosen in preference to a vanishing radial velocity at r = a
since the limit a → ∞ corresponding to the unbounded domain is obtained most
simply.

Free wave solutions of Eqs. (6.39)-(6.41) are obtained by substituting

(u′, v′, h′) = (û(r), v̂(r), ĥ(r)) exp[nλ− ωt)], (6.42)

where n denotes the azimuthal wavenumber and ω the wave frequency. In azimuthal-
Fourier space the linearized disturbance equations (6.39)-(6.41) can be written as a
matrix equation




ω f −g d
dr

f ω −ng
r

H
r

d
dr

r −nH
r

ω







iû
v̂

ĥ


 = 0, (6.43)

which possesses three sets of solutions. The first set corresponds to steady geostrophic,
flow (ω = 0) in which the Coriolis force is balanced by the pressure gradient force,

fv̂ = g
∂ĥ

∂r
, (6.44)

fû = − in

r
gĥ. (6.45)

Here, gĥ/f is a streamfunction for the geostrophic wind. The amplitudes of the
vorticity (ζ̂) and potential vorticity (P̂ ) are given by

ζ̂ =
d

rdr
(rv̂)− in

r
û =

g

f
∇̂2ĥ, (6.46)

P̂ =
ζ̂

H
− f

ĥ

H2
=

g

fH

(
∇̂2ĥ− γ2ĥ

)
, (6.47)

where ∇̂2 = (1/r)(d/dr)(rd/dr) − n2/r2) is the horizontal Laplacian in azimuthal-
Fourier space and γ2 = f 2 − f 2gH is the inverse square of the Rossby radius of
deformation. For isolated disturbances, ζ̂ and P̂ are anti-correlated with ĥ.

If the parabolic free surface associated with the rotating annulus is neglected in
Eqs. (6.39)-(6.41), the geostrophic modes become Rossby waves (see DM, Chapter
11). For small free-surface slopes, these waves retrogress in the rotating frame possess
small frequencies compared to the rotation frequency, and are well described by quasi-
geostrophic dynamics. The Rossby wave vorticity and PV are again anti-correlated
with the height

ζ ′ ∝ −h′,

P ′ ∝ −h′. (6.48)
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Superposing the geostrophic and isallobaric winds shows that the total wind lags
the height contours. The propagation of a monochromatic Rossby wave around the
annulus can then be interpreted as an adjustment process whereby wind adjusts to
mass,

wind → mass, (6.49)

where mass represents the perturbation height and wind represents the total pertur-
bation wind.

Define βeff = f/Hd/H/dr. Then the local dispersion relation for topographic
Rossby waves in an annulus takes the form

ω =
n
r
βeff

k2 + n2

r2 + f2

gH

, (6.50)

where ω is wave frequency and k is radial wavenumber. For sufficiently small free-
surface slopes, Rossby waves possess frequencies smaller than f therefore

σ2 < f 2. (6.51)

Substituting (2.36) xxxx into (??) yields

L2 <
c2

f 2
. (6.52)

where L = r/n, the characteristic azimuthal length scale for azimuthal wavenumber
n, and c = σr/n, the azimuthal Rossby wave phase speed. Because (6.52) is formally
identical to Rossby’s adjustment criterion for balanced flow, it suggests a useful
interpretation of linearized Rossby wave dynamics. Rewriting (6.52) yields

L2

c2
>

1

f 2
, (6.53)

indicating that if the wave timescale is sufficiently long the Coriolis force can effec-
tively rotate the wind vectors, and thus wind adjusts to mass. Such wave disturbances
are regarded as balanced and are customarily identified with the slow manifold.

Returning to the constant depth model (??), the second and third solutions are
unsteady (σ 6= 0). In this case, (??) may he solved by eliminating winds in favor of
height yielding a simplified Tidal equation

d2ĥ

dr2
+

1

r

dĥ

dr
+

(
κ2 − n2

r2

)
ĥ = 0, (6.54)

where κ represents the eigenvalue for azimuthal wave-number n. The frequency σ is
determined from dispersion relation for gravity-inertia waves (Poincaré waves),

σ2 = f 2 + κ2gH. (6.55)
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Solutions to (2.12) that are bounded at r = 0 are given bv

ĥ(r) = AJn(κr), (6.56)

where Jn is the Bessel function of the first kind of order n and A is an arbitrary
amplitude. The outer boundary condition ĥ(a) = 0 furnishes discrete eigenvalues
(κ; j = l, 2, . . .) for each azimuthal wavenumber n. the dispersion relation (2.13) then
yields a positive and negative frequency for each j. As a is increased, so as to better
approximate an unbounded domain, the eigenfrequencies (2.13) become more closely
spaced and ultimately approach a twofold continuum as a → ∞. Nonaxisymmetric
modes (n = 1, 2, . . .) with σ > 0 propagate around the origin in a counterclockwise
sense, (progress relative to f), while nonaxisymmetric modes with σ < 0 propagate
around the origin in a clockwise sense (retrogress relative to f). Velocity amplitudes
follow from the polarization relations

iû =

(
−nf

r
gĥ + σg dĥ

dr

)

σ2 − f 2
, (6.57)

v̂ =

(
−nσ

r
gĥ + fg dĥ

dr

)

σ2 − f 2
. (6.58)

On making use of (2.12), the PV amplitude is then

P̂ =
ζ̂

H
− f

ĥ

H2

=
−gf

H(σ2 − f 2)

{
∇̂2ĥ + κ2ĥ

}
= 0 (6.59)

Gravity-inertia waves are thus invisible on PV maps and vorticity is correlated with
height

ζ ′ ∝ h′. (6.60)

For gravity waves, a rising (fallilig) free-surface follows convergent (divergent) flow
and so to wind

mass → wind. (6.61)

Gravity-inertia waves always possess frequencies greater than f thus

σ2 > f 2, (6.62)

implying

L2

c2
<

1

f 2
, (6.63)
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where again L = R/n; yet c = σr/n the azimuthal gravity-inertia wave phase speed.
In contrast to Rossby waves, (3.1) indicates if the wave timescale is sufficiently short,
the, Coriolis force has too little time to rotate the wind vectors and hence mass
adjusts to wind. Such wave disturbances are regarded as unbalanced and are cus-
tomarily identified with the fast manifold.

The geostrophic and gravity-inertia wave solutions constitute a complete basis
for the linear problem Eqs. (??)-(??) from which an arbitrary initial condition in
the height and/or velocity field may be represented and evolved forward in time.

6.4 Free waves on barotropic vortices

6.4.1 Disturbance equations

Having reviewed the free waves on a resting fluid layer, we now investigate the free
waves on a circular vortex in gradient balance

fv +
v2

r
= g

dh

dr
, (6.64)

where v = v(r) denotes the basic-state tangential wind and h = h(r) the basic-state
free surface height. For small-amplitude disturbances on a stationary vortex, the
linearized f -plane momentum and continuity equations are, respectively,

(
∂

∂t
+

v

r

∂

∂λ

)
u′ −

(
f +

2v

r

)
v′ + g

∂h′

∂r
= 0, (6.65)

(
∂

∂t
+

v

r

∂

∂λ

)
v′ +

(
f +

d

rdr
(rv)

)
u′ + g

∂h′

r∂λ
= 0, (6.66)

(
∂

∂t
+

v

r

∂

∂λ

)
h′ + h̄

(
∂

r∂r
(ru′) +

∂v′

r∂λ
(rv)

)
+ u′

dh̄

dr
= 0. (6.67)

The modal ansatz

(u′, v′, h′) = [û(r), v̂(r), ĥ(r)]exp[i(nλ− σt)] (6.68)

again yields a matrix equation




σ̂ f̃ −g d
dr

η̄ σ̂ −g n
r

d
rdr

[rh̄( )] −nh
r

σ̂







iû
v̂

ĥ


 =




0
0
0


 , (6.69)

though now σ = σ − nΩ/r denotes the Doppler-shifted frequency, Ω(r) = v/r the
mean angular velocity, η = f + d(rv)/dr the, absolute vertical vorticity, and f̃ =
f + 2Ω/r the modified Coriolis parameter. At r = 0, perturbation quantities are
assumed to be finite and symmetry considerations require that dĥ/dr = 0 for n = 0
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(symmetric modes) and that ĥ = 0 for n 6= 0 (asymmetric modes). To retain the
analog of the two-fold continuum of gravity-inertia waves derived in section 6.3, we
require a vanishing perturbation height field as, r →∞.

6.5 The basic state: A PV inversion problem

Among the many vortex profiles that could be selected, this work-focuses on basic
states representative of hurricanes. A distinguishing property of such vortices is
the manner in which the azimuthally averaged tangential winds decay with radius
in the near-vortex region. To maintain a quasi-steady state under the influence of
quadratic surface drag, the near-surface tangential winds in the near-vortex region
must decay approximately as the inverse square root of the radius (Riehl 1963. Pearce
1993). Although one may readily construct wind profiles that are consistent with
this property and are furthermore inertially (centrifugally) stable, the vortex may
still be susceptible to shear instability if the radial PV gradient changes sign. As our
objective is to first elucidate the structure of neutral waves in hurricane-like vortices,
we limit the (v, h) profiles to be descendants of PV profiles

P̄ =
1

h̄

[
f +

1

r

d(rv̄)

dr

]
, (6.70)

which decrease monotonically from the Storm center, are positive in the Northern
Hemisphere (inertial stability), and exhibit the proper v decay in the near-vortex
region. For vanishing disturbances at infinity monotonic PV pro guarantee shear
stability in the asymmetric balance (AB) slow manifold (Montgomery and Shapiro
1995).

In defining the basic state, it proves convenient to introduce nondimensional
variables indicated by an asterisk:

h = Hh∗, r = Rmr∗, v0Vmv∗.

Here, H denotes the resting depth Vm the maximum tangential wind speed, and
Rm the radius of maximum tangential winds. Differentiating (6.70) with respect to
radius and substituting (6.64) furnishes the nondimensional invertibility problem for
v(r),

d2v̄

dr2
+

(
1

r
− β

)
dv̄

dr
−

(
1

r2
+

β

r
+

FP̄

R2

)
v̄ − P̄ v̄2

r

F

R
=

β

R
, (6.71)

where β = 1/P ·P/dr, a normalized basic-state PV gradient, R = Vm/fRm a Rossby
number, and F = V 2

m/gH a squared Froude number. In (6.71) asterisk have been
dropped. Solutions are sought subject to the boundary conditions that v(0) = 0 and
that at sufficiently large radius the tangential wind decays as an equivalent point
vortex with a deformation radius of

√
gH/f . Mathematically this latter condition
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takes the form v(r)K1(
√

Fr/R) for
√

Fr/R À 1, where K1, is the modified Bessel
function of the second kind of order one.

When R À 1, the nonlinearity of (6.71) prevents analytical solution. Denoting
vi = v(ri) where ri = i · σr,

6.5.1 Wave-mean flow interaction

Here we investigate the effects of radially propagating vortex Rossby-waves on the
mean vortex. Provided the amplitudes of the asymmetries remain small, the mean-
flow changes at second order in disturbance amplitude can be obtained from the
divergence of the eddy-momentum flux

∂v̄

∂t
= − 1

r2

∂

∂r
(r2u′v′) (6.72)

where φ̄ denotes azimuthal mean of φ. If the momentum flux vanishes after some
time t, the change in the mean tangential wind follows on integrating (6.72)

∆v̄(r) = −
∫ τ

0

1

r2

∂

∂r
(r2u′v′)dt. (6.73)

Although asymmetries cannot change the area-integrated angular-momentum and
circulation, they can change local values of these quantities. An equally valid rep-
resentation for the change in the mean tangential wind is given by the integrated
radial flux of vorticity.
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Chapter 10

Appendices

10.1 Thermodynamics

Here are a few notes on important thermodynamic quantities. More details are to
be found in Emanuel (1994).

10.1.1 Basic quantities

The specific enthalpy, k, is defined by k ≡ u + pα, where u is the specific internal
energy. For an ideal gas, k = cpT . Then the first law of thermodynamics can be
written

dq = dk − αdp. (10.1)

The specific enthalpy of a mixture of dry air, water vapour and liquid water is

k = kd + rvkv + rLkL, (10.2)

where kd, kv and kL are the specific enthalpies of the components and rv and rL are
the mixing ratios of water vapour and liquid water.

The latent heat is defined by

Lv(T ) = kv − kL. (10.3)

Then (10.2) may be written

k = kd + Lvr + kLrT , (10.4)

where rT is the total water content. From the definitions of kd and kv, (10.4) becomes

k = (cpd + rT cL)T + Lvr. (10.5)
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10.1.2 CAPE and CIN

The convective available potential energy of an air parcel lifted from a height zi to
its level of neutral buoyancy (LNB) is defined as

CAPEi =

∫ LNB

zi

F · dl , (10.6)

where F is the force per unit mass that acts on on the parcel and dl is a unit vector
along the path of the displacement. In the case of upright convection, this may be
written

CAPEi =

∫ LNB

zi

Bdz (10.7)

where z measures height (normal to geopotential surfaces) and B is the buoyancy
force. Using (Check), we may write

CAPEi =

∫ LNB

zi

g

(
αp − αa

αa

)
dz (10.8)

or assuming the environment to be in hydrostatic equilibrium,

CAPEi =

∫ pi

p
LNB

(αp − αa) dp (10.9)

where pi and pLNB are the pressures at the initial parcel level and its LNB, respec-
tively. Finally, using the ideal gas law, (10.9) may be written

CAPEi =

∫ pi

p
LNB

Rd (Tρp − Tρa) d ln p. (10.10)

It follows that CAPEi is proportional to the area enclosed by the density temperature
of the lifted parcel and that of the environment, respectively, on a thermodynamic
diagram whose coordinates are linear in temperature and in log p. CAPE depends on
the initial parcel, i, and on the thermodynamic process assumed in lifting the parcel.
It can be defined only for those parcels that are positively buoyant somewhere on
the sounding.

Another method of assessing stability is to plot a sounding on a thermodynamic
diagram with a conserved state variable as one of the coordinates. A convenient
choice is the saturation pseudoentropy, s∗p, which is related to the saturation pseu-
doequivalent potential temperature, and is conserved following the pseudoadiabatic
displacement of a saturated parcel. The density of the (unsaturated) environment
may be approximated as a function of p and s∗p. The approximation involves replac-
ing the mixing ratio by its saturation value in the virtual temperature. Using (10.10)
the parcel CAPE can be approximated in terms of p, s∗p and r, as

CAPEi =

∫ pi

pLNB

1

1 + r

{(
∂αd

∂s∗p

)

r,p

(
s∗pp − s∗pa

)
+

[(
∂αd

∂r∗

)

s∗p,p

− α

]
(rp − ra)

}
dp

(10.11)
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where we have assumed that s∗p and rp − ra are reasonably small and have used the
result that α = αd/(1 + r)1. If we neglect the direct effect of water substance on
density, this can be further approximated as

CAPEi =

∫ pi

pLNB

(
∂αd

∂s∗p

)

p

(
s∗pp − s∗pa

)
dp (10.12)

which is the desired result. where we have used Maxwell’s relation (2.52). It follows
that CAPEi is approximately given by the area between the parcel’s s∗p line and the
environmental curve on a diagram with s∗p as the abscissa and T as the ordinate. A
diagram of this type is shown in Fig. 4.3.

It should be pointed out that the level of approximation used in deriving (4.21)
can be large, with errors of up to 100% in the calculations of CAPEi for moist
tropical soundings.

10.1.3 Maxwell’s Equations

In a saturated atmosphere it is possible to define a saturated moist entropy, s∗, which
is invariant under moist reversible processes. This quantity satisfies a modified form
of the first law of thermodynamics:

Tds∗ = du + pda− Ldq∗, (10.13)

where u is the internal energy, L is the heat of vaporization, and q∗ is the saturation
mixing ratio. It is also possible to define a saturated moist enthalpy h∗ such that

h∗ − u + pa− Lq∗. (10.14)

From (10.13) and (10.14) it follows that

dh∗ = Tds∗ + αdp. (10.15)

From this it may be deduced that
(

∂h∗

∂p

)

s∗
= α (10.16)

(
∂h∗

∂s∗

)

p

= T. (10.17)

1Note that

δα =
1

1 + r

[
∂αd

∂s∗p
δs∗p +

∂αd

∂r
δr

]
− αd

(1 + r)2
δr

and the last term in this expression is simply

− α

1 + r
δr.
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Now, because q∗ is a function of temperature and pressure alone, h∗ is a state variable
which may be expressed as a function of any other two state variables, such as p and
s∗. Thus (

∂h∗

∂s∗

)

p

(
∂h∗

∂p

)

s∗
=

(
∂h∗

∂p

)

s∗

(
∂h∗

∂s∗

)

p

(10.18)

Substituting (10.16) and (10.17) into the above we obtain

(
∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
(10.19)
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10.2 Transformation of Euler’s equation to an ac-

celerating frame of reference

The Euler equation may be written

∂u

∂t
+ u · ∇u + f ∧ u = −1

ρ
∇p

and

u · ∇u = ω ∧ u +∇(
1

2
u2)

Therefore
∂u

∂t
+ (ω + f) ∧ u = −1

ρ
∇

(
p +

1

2
u2

)

Now transform the coordinate system (x, t) to (X, T ), where

x = X + xc(t), t = T

and
dxc

dt
= c(t) = (c1(t), c2(t)).

Figure 10.1:

Then
∂

∂x
=

∂

∂X

∂X

∂x︸︷︷︸
=1

+
∂

∂Y

∂Y

∂x︸︷︷︸
=0

+
∂

∂T

∂T

∂x︸︷︷︸
=0

∂

∂y
=

∂

∂X

∂X

∂y︸︷︷︸
= 0

+
∂

∂Y

∂Y

∂y︸︷︷︸
=1

+
∂

∂T

∂T

∂y︸︷︷︸
=0

∂

∂t
=

∂

∂X

∂X

∂t︸︷︷︸
=−c1

+
∂

∂Y

∂Y

∂t︸︷︷︸
=−c2

+
∂

∂T

∂T

∂t︸︷︷︸
=1
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∂
∂x

∂
∂y

∂
∂t




=




1 0 0

0 1 0

−c1 −c2 1







∂
∂X

∂
∂Y

∂
∂T




,

or
∂

∂t
=

∂

∂T
− c · ∇X , ∇x = ∇X

Note that although
T = t, ∂/∂T 6= ∂/∂t.

Let U be the velocity in the moving frame, i.e., U = u−c. Then the Euler equation
transforms to

(
∂

∂T
− c · ∇

)
(U + c) + (ω + f) ∧ (U + c) =

1

ρ
∇p−∇

(
1

2
(U + c)2

)
,

where
ω = ∇x ∧ u = ∇X ∧U and U ∧ c = 0.

Further reduction gives

∂U

∂T
+ (ω + f) ∧U = −1

ρ
∇p−∇(1

2
U2)− ∂c

∂t
+ c · ∇U− (ω + f) ∧ c−∇(U · c),

using the fact that ∇c = 0 because c = c(t). Now

∇(U · c) = U · ∇c︸︷︷︸
=0

+c · ∇U + U ∧ (∇∧ c)︸ ︷︷ ︸
=0

+c(∇∧U)︸ ︷︷ ︸
= ω

∴ ∂U

∂T
+ (ω + f) ∧U = −1

ρ
∇(p + 1

2
ρU2)− f ∧ c− dc

dt
. (10.20)

The vorticity equation takes the form

∂ω

∂T
+ U · ∇(ω + f) = (ω + f) · ∇U− c · ∇f (10.21)

using
∇∧ (f ∧ c) = f (∇ · c)︸ ︷︷ ︸

=0

− (∇ · f)c︸ ︷︷ ︸
=0

f=(0,0,f)
and ∂f/∂z=0.

+c · ∇f − f · ∇︸︷︷︸
=0

c
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10.3 Angular momentum and vorticity fluxes

Consider an axisymmetric flow (u(r, z, t), v(r, z, t), w(r, z, t)) expressed in cylindrical
coordinates and assume a Boussinesq fluid for simplicity. Then

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+

uv

r
+ fu = 0 (10.22)

and
∂

∂r
(ρur) +

∂

∂z
(ρwr) = 0 (10.23)

and the vorticity vector for this flow is

ω = (ξ, η, ζ) =

(
∂v

∂z
,

∂u

∂z
− ∂w

∂r
,
1

r

∂

∂r
(rv)

)
(10.24)

Equation (10.22) can be written as

∂v

∂t
+ u (ζ + f) + w

∂v

∂z
= 0 (10.25)

Define the relative circulation to be Γ = 2πrv. Then (10.25) can be written

∂Γ

∂t
+ (2πru)(ζ + f) + w

∂Γ

∂z
= 0 (10.26)

Thus the local rate-of-change of circulation about a circle of radius r equals the flux
of vorticity into the circle plus the vertical advection of circulation at radius r.

The absolute angular momentum per unit mass is M = rv + 1
2
fr2. Multiplying

(10.22) by r gives

∂

∂t
(rv) + ru

∂v

∂r
+ rw

∂v

∂z
+ u(v + fr) = 0 (10.27)

Now
∂

∂t
(rv) =

∂M

∂t
and

∂

∂z
(rv) =

∂M

∂z
, while

∂M

∂r
= r

∂v

∂r
+ rf.

Thus (10.27) becomes
∂M

∂t
+ u

∂M

∂r
+ w

∂M

∂z
= 0. (10.28)

Hence M is conserved by the flow in the meridional (r − z) plane. Consider now a
non-axisymmetric vortex. Then (10.22) and (10.22) become

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂λ
+ w

∂v

∂z
+

uv

r
+ fu = − 1

ρr

∂p

∂λ
(10.29)

and
∂

∂r
(ur) +

∂v

∂λ
+

∂

∂z
(wr) = 0 (10.30)
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In this case

ω = (ξ, η, ζ) =

[
1

r

∂w

∂λ
− ∂v

∂z
,

∂u

∂z
− ∂w

∂r
,

1

r

(
∂

∂r
(vr)− ∂u

∂λ

)]

The flux form of (10.29) is

∂

∂t
(vr) +

∂

∂r
(ruv) +

∂

∂λ
(v2) +

∂

∂z
(wvr) + u(v + fr) = −1

ρ

∂p

∂λ
. (10.31)

Put v = v + v′, where an overbar denotes some sort of average (e.g. a Reynolds’
average or an azimuthal average) for which, by definition, v′ = 0 then the average of
(10.31) becomes

∂

∂t
(vr) +

∂

∂r
(ruv) + (ru′v′) +

∂

∂λ
(v2 + v′2) +

∂

∂z
(rwv + rw′v′)

+ u(v + fr) + u′(v′ + rf ′) = −1

ρ

∂p

∂λ
. (10.32)

Then

∂v

∂t
+

1

r

∂

∂r
(ruv) +

1

r

∂

∂λ
v2 +

∂

∂z
(wv) +

u

r
(v + fr)

= −1

ρ

∂p

∂λ
− 1

r

∂

∂r
(ru′v′)− 1

r

∂

∂λ
(v′2)− u′

(
v′

r
+ f ′

)
− ∂

∂z
(w′v′). (10.33)

Also, the average of (10.30) gives

∂

∂r
(ur) +

∂v

∂λ
+

∂

∂z
(wr) = 0, (10.34)

so that (10.33) may be reduced to

∂v

∂t
+ u

(
∂v

∂r
+

v

r
+ f

)
+ v

∂v

∂λ
+ w

∂v

∂z

= −1

ρ

∂p

∂λ
− 1

r

∂

∂r
(ru′v′)− u′

(
v′

r
+ f ′

)
− 1

r

∂

∂λ
(v′2)− ∂

∂z
(w′v′)

︸ ︷︷ ︸
can this be simplified in terms

of vorticity?

. (10.35)

Note if ( ) is an azimuthal average, then the terms involving ∂/∂λ are identically
zero.

If v is a Reynolds’ average, we can calculate the sum of the eddy terms on the
r.h.s. of (10.35) as a residual if we have two consecutive analysis of v. We can then
carry out an azimuthal Fourier analysis of the equation.

Suppose that (ϕ) denotes a Reynolds’ average and (ϕ)′ a deviation therefrom,
while [ϕ] is an azimuthal average and (ϕ̃) is a deviation from this. Then φ can be
written as:

φ = [φ] + [φ′] + φ̃, φ̃′,

where
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• [φ] is the symmetric part of the Reynolds’ average,

• [φ′] is the symmetric part of the ‘sub-grid-scale’ motions,

• φ̃ is the asymmetric part of the Reynolds’ average, and

• φ̃′ is the asymmetric part of the ‘sub-grid-scale’ motions.
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