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ABSTRACT
We give a simple method to calculate without approximation the balanced density field of an axisymmetric vortex in
a compressible atmosphere in various coordinate systems given the tangential wind speed as a function of radius and
height and the vertical density profile at large radius. The method is generally applicable, but the example considered is
relevant to tropical cyclones. The exact solution is used to investigate the accuracy of making the anelastic approximation
in a tropical cyclone, i.e. the neglect of the radial variation of density when calculating the gradient wind.

We show that the core of a baroclinic vortex with tangential wind speed decreasing with height is positively buoyant
in terms of density differences compared at constant height, but at some levels may be interpreted as cold-cored or
warm-cored depending on the surfaces along which the temperature deviation is measured. However, it is everywhere
warm-cored if the potential temperature deviation is considered. In contrast, a barotropic vortex in a stably-stratified
atmosphere is cold-cored at all levels when viewed in terms of the temperature deviation at constant height or constant
σ , but warm-cored when viewed in terms of the potential temperature deviation along these surfaces. The calculations
provide a possible explanation for the observed reduction in surface air temperature in the inner core of tropical cyclones.

1. Introduction

An important problem relating to the initialization of tropical
cyclones in numerical models, either for prediction or research
purposes, is to determine the balanced density field consistent
with a prescribed vortical wind distribution and a prescribed ver-
tical profile of density at some large radius from the vortex centre.
The problem is complicated because many numerical models are
formulated with σ as the vertical coordinate, requiring that the
density field be specified on σ -surfaces. Here σ = (p − p t)/
(ps − p t), where ps is the surface pressure and p t is the pressure
at the top of the domain, normally assumed to be a constant. The
problem has been examined by various authors over the years
and a list of references for the earlier studies as well as a cri-
tique of these is given by Wang (1995). In the same paper, Wang
proposed a general method for accomplishing the initialization.

Frequently, the initial vortex is taken to be axisymmetric with
the tangential wind distribution specified as a function of radius
and p or σ , but it could just as well be specified as a function
of radius and height. For this case we outline a much easier
and unapproximated method to obtain the balanced density field
on p-surfaces and σ -surfaces as well as on surfaces of constant
height. The method is based on the exact form of the thermal
wind equation derived by Smith et al. (2005).
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The reduced pressure in the centre of a balanced cyclonic vor-
tex is associated with a reduced density. Thus, if the tangential
wind speed decreases with height as in a tropical cyclone, the
vortex has a warm core when viewed in pressure coordinates
(i.e. the temperature increases radially inwards along the iso-
bars, which in turn become lower). The questions then arise:
does the temperature increase with decreasing radius at constant
height or constant σ and, in particular, how large is the temper-
ature gradient at the surface? The latter question is important
because observations have shown a reduction in the sea–air tem-
perature contrast in the inner-core region of a tropical cyclone
on the order of 5◦C (e.g. Korelov et al., 1990; Pudov, 1992). This
difference has been attributed primarily to a reduction of the air
temperature in the region of strong wind speeds caused by the
evaporation of sea spray (see, for example, Fairhall et al., 1994,
and references therein). While not discounting the importance of
this mechanism, the results presented below offer an alternative
and simpler explanation.

2. Unapproximated thermal wind equation

2.1. Height–radius coordinates (r, z)

The gradient wind equation and hydrostatic equation for an ax-
isymmetric vortex may be written in vector form as

(
∂ p

∂r
,
∂ p

∂z

)
= ρ(C, −g), (1)
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where

C = v2

r
+ f v (2)

is the sum of the centrifugal and Coriolis forces per unit mass,
respectively, v is the tangential wind speed, r is the radius, z is the
height, ρ is the density, p is the pressure, f is the Coriolis parame-
ter, and g is the acceleration due to gravity. Eliminating the pres-
sure from the two components of eq. (1) by cross-differentiation
gives the first-order partial differential equation

∂

∂r
ln ρ + C

g

∂

∂z
ln ρ = − 1

g

∂C

∂z
, (3)

which is the unapproximated form of the thermal wind equation.
The characteristics of this equation satisfy

dz

dr
= C

g
(4)

and along these characteristics

d

dr
ln ρ = − 1

g

∂C

∂z
. (5)

According to eq. (4), displacements (dr, dz) along characteristics
satisfy (dr, dz) (C , − g) = 0, i.e. they are at right angles to
the pressure gradient (from eq. 1). Thus, the characteristics of
eq. (3) are the isobaric surfaces. Equation (5) tells us how ln ρ

varies along these characteristics and shows that the variation is
proportional, inter alia, to ∂v/∂z. If ∂v/∂z > 0, then ln ρ (and
therefore ρ) decrease with radius and temperature, T , increases
with radius along isobar surfaces. In this case, a cyclonic vortex
is cold-cored and an anticyclonic vortex is warm-cored. The
reverse is true when ∂v/∂z < 0.

We are now able to address the problem of initializing tropi-
cal cyclones in numerical models raised in Section 1. The prob-
lem is to determine the balanced density field consistent with a
prescribed initial tangential wind distribution v(r , z) and a pre-
scribed ambient density profile ρ 0(R, z) at some large radius R.
Equations (4) and (5) provide an accurate way to accomplish this
task. We refer the reader to Fig. 1a. Typically one has a set of
grid points in the radial and vertical direction. Consider a grid
point P with coordinates (rp, zp). We can integrate eqs. (4) and
(5) radially outwards to radius R to find the height of the isobaric
surface, zR, at this radius and the change in ln ρ between P and
the point (R, zR). Because p(R, zR) and ln ρ are known [p(R,
zR) is obtained by integrating the hydrostatic equation at radius
R], we can immediately determine ρ and p at the point P, and
then, of course, the temperature at this point using the ideal gas
equation.

2.2. Pressure coordinates (r, p)

In pressure coordinates the analogous equation to eq. (1) is(
∂φ

∂r
,
∂φ

∂ p

)
= (C, −α), (6)

Fig. 1. Illustration relating to the calculation of the pressure and
density at a grid point, P, in (a) height coordinates and (b) σ

coordinates. The curved lines indicate isobaric surfaces through P and
through a point at the surface below P. These surfaces, which satisfy
eq. (4), are characteristics of eq. (3) and we can integrate eq. (4) to find
the height of these surfaces at r = R, where the vertical pressure
distribution is known.

where φ is the geopotential (= gz) and α is the specific volume
(=1/ρ). Cross-differentiation to eliminate φ then leads to

∂α

∂r
= −∂C

∂ p
. (7)

As expected, this is a simpler equation to solve for the density
(actually its inverse) than eq. (3), a reflection of the fact that,
as shown above, pressure coordinates are the characteristic co-
ordinates for this problem. To complete the specification of the
vortex we may integrate the first component of eq. (6) radially
to obtain the height of the isobaric surfaces in physical space.
The procedure is similar to that of the previous section. Again
we assume that v(r , z) is prescribed for all r and z and that ρ =
ρ 0(R, z) at some large radius R. In principle, for each grid point
P with coordinates (r , p), we can integrate the first component
of eq. (6) together with eq. (7) radially outwards to radius R to
find the geopotential height difference and the difference in α

between the point P and the point (r , p). It should remembered
that in integrating the first of these equations, v = v(r , φ/g).
Moreover, because we know v as a function of r and z rather
than r and p, it is preferable to reformulate eq. (7) as

∂

∂r
ln ρ = − 1

g

∂C

∂z
, (8)
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which, of course, is basically eq. (5). Because ρ and φ are known
at (R, p) from an integration of the second component of eq. (6),
we can infer their values at the point (r , p) from the differences
in φ and ln ρ obtained by integrating the first component of eq.
(6) and eq. (8) as described above. If φ(r , p) > 0, the possible
intersection of a given isobaric surface with the surface z = 0
can be determined by continuing the inward integration of the
first component of eq. (6) until either r = 0 or φ(r , p) = 0, the
latter point corresponding with the surface. If it happens that for
the chosen point (r , p), φ(r , p) < 0, the point (r , p) already
lies below the surface. Clearly we need to monitor the sign of φ

during the inward integration.

2.3. Sigma coordinates (r, σ )

Most tropical cyclone models are formulated in σ -coordinates,
where σ = (p − p t)/(ps − p t), ps is the surface pressure and
p t is the pressure at the top of the domain, normally assumed to
be a constant. Now the equation analogous to eq. (1) is(

∂φ

∂r
,
∂φ

∂σ

)
=

[
C − σα

∂ ps

∂r
, −α(ps − pt)

]
(9)

and cross-differentiation leads to

∂α

∂r
− σ

∂

∂r
ln(ps − pt)

∂α

∂σ
= − 1

ps − pt

∂C

∂σ
. (10)

The characteristics of this equation satisfy

dσ

dr
= −σ

∂

∂r
ln(ps − pt), (11)

the solution of which is

σ (ps − pt) = constant. (12)

It follows from the definition of σ , not surprisingly, that these are
again just the isobaric surfaces. Equation (9) tells us that along
these characteristics

dα

dr
= − 1

(ps − pt)

∂C

∂σ
. (13)

To find the balanced density field of a vortex in this case, the first
inclination is to proceed as before using eqs. (9)–(13). However,
it turns out to be best to carry out the actual analysis in height
coordinates using the methodology of Section 2.1. Now, we start
from a grid point P with coordinates (rp, σ p) in σ -coordinates.
We refer the reader to Fig. 1b. First we must find the surface
pressure at this radius, ps (rp). We do this by integrating eq.
(5) radially outwards along the isobaric surface from (rp, σ =
1), i.e. (r , 0) in z-coordinates, to find the height of this surface,
zRs, at r = R. We can determine the pressure at this radius as
before from an integration of the hydrostatic equation and this
pressure is equal also to ps (r ). Knowledge of ps (r ) enables us
to determine the pressure, p, at P from the knowledge of σ there
and the definition of σ . The next step is to find the height, zR,
at which this isobaric surface intersects the boundary r = R and
the density of air at that point of intersection from our complete

knowledge of conditions at r = R. Then we integrate eqs. (4) and
(5) radially inwards to radius r to find the height of the pressure
surface at the point P as well as the density at that point. This
procedure can be repeated for all grid points.

2.4. Height–radius coordinates, anelastic approximation

The ability to construct an exact solution to the axisymmetric
problem enables us to investigate the accuracy of approximate
solutions, which might be more amenable to generalization to the
non-axisymmetric case. One such approximation is the anelastic
approximation in which the density is assumed to be a function
of height only when calculating the inertia of the air (Ogura and
Phillips, 1962). Then, eq. (1) takes the form(

∂ p

∂r
,
∂ p

∂z

)
= (ρ0C, −ρg), (14)

and elimination of the pressure then gives

∂ρ

∂r
= − 1

g

∂

∂z
(ρ0C). (15)

Given v(r , z) and ρ 0 (z), the first component of eq. (14) can be
integrated with respect to r at constant z to give the pressure p(r ,
z) and eq. (14) can be integrated to give the density ρ(r , z). The
accuracy of this procedure is investigated below.

3. Discussion

Figure 2a shows an example of a calculation of the density field
for a tangential wind field with scales appropriate to a moderately
intense tropical cyclone, while Fig. 2b shows the height of the
isobaric andσ surfaces in this case (here p t =100 mb). The radial
integration of eqs. (4) and (5) is accomplished using a standard
fourth-order Runge–Kutta procedure (see, for example, Press et
al., 1992, Section 16.1). The vortex has a maximum tangential
wind speed of 40 m s−1 at a radius of 40 km and the circulation
decays with height,1 i.e. ∂v/∂z ≤ 0. Both the density and pressure
surfaces dip down near the vortex axis so that the inner core of
the vortex is positively buoyant in the conventional sense, i.e.
−g[ρ(r , z) − ρ 0 (z)]/ρ(r , z) > 0 (see Smith et al., 2005).

It is well known that tropical cyclones are warm-cored vor-
tices, but it is not obvious from a casual inspection of the pressure
and density fields in Fig. 2 that a balanced vortex with the tangen-
tial wind speed distribution in Fig. 2a is warm-cored, or whether
this vortex has a radial temperature gradient at the surface. Of
course, the temperature structure is easy to calculate using the
gas equation, p = ρRT , where R is the specific gas constant
for air. As shown in Fig. 3, the temperature deviation from that
in the environment depends on the coordinate surfaces that are
used to calculate it. It follows immediately from eq. (5) that if
∂v/∂z < 0, ρ decreases with decreasing radius along surfaces

1In reality, the maximum tangential wind speed moves radially outwards
with height, but this detail is unimportant for the present illustrations.
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a)

b)

Fig. 2. (a) Isotachs of tangential wind speed v (thick solid lines,
contour interval 5 m s−1) and isopleths of constant density ρ (thin solid
lines, contour interval 0.1 kg m−3) in a vertical plane through the axis
of a balanced, axisymmetric, tropical-cyclone-scale vortex. (b)
Surfaces of constant pressure p (thick solid lines, contour interval 100
mb) and constant σ (thin solid lines, contour interval 0.1).

of constant pressure, whereupon the temperature and potential
temperature must both increase inwards and the vortex must be
warm-cored in this sense. For this reason, we chose not to plot
this temperature deviation in pressure coordinates, but rather as
a function of radius and height (Fig. 3a) to enable comparison
with other cases. We see that the temperature perturbation is
everywhere positive with a maximum on the axis at a height be-
tween 8 and 9 km. It is less obvious from the equations what the
behaviour should be at the surface, but for the chosen sounding
and tangential wind speed distribution, Fig. 3a shows that the ra-
dial gradient of temperature deviation is negative at the surface.
In this case the magnitude of the surface temperature deviation
at the centre is small (less than 1◦C), but remember that the
temperature deviation in this panel is the difference along the
isobaric surface through the point in question. The situation is
quite different if one compares temperature along surfaces of

constant z or constant σ as indicated in Figs. 3b and c, respec-
tively. In these two cases, which are similar on account of the
fact that the σ surfaces are close to horizontal (see Fig. 2b), the
vortex would be judged as cold-cored in the lower troposphere
and warm-cored above. In these two coordinate systems,2 the ra-
dial temperature gradient at the surface is positive and now there
is a reduction of surface air temperature at the vortex centre of
the order of 5◦C, which is comparable to the typical observed
difference between the surface air temperature and the sea sur-
face temperature in the inner core of tropical cyclones as noted
above.

The situation is more orderly if we examine the potential tem-
perature deviation. Because this quantity is positive when defined
along isobaric surfaces, it must be even more positive when de-
fined in z coordinates because the isobaric surfaces rise with
increasing radius and the potential temperature at large radii
typically increases with height. The same is true of the deviation
defined along σ surfaces because these are very nearly horizon-
tal and it follows that the vortex may be regarded consistently
as warm-cored in all three coordinate systems. As an example,
Fig. 4a shows the potential temperature deviation calculated at
constant z. The maximum deviation lies on the vortex axis at a
height between 9 and 10 km and there is a negative radial gradient
at the surface.

While attention has been focused so far on the situation rele-
vant to tropical cyclones, one obvious question at this point is:
what is the situation for a barotropic vortex in a vertically strati-
fied compressible atmosphere? In a barotropic vortex the tangen-
tial velocity is independent of height, whereupon the right-hand
side of eq. (5) is zero. It follows that the isobaric surfaces are
also surfaces of constant density, constant temperature and con-
stant potential temperature. Such a vortex must be cold-cored at
all levels when viewed in height coordinates or σ coordinates,
because the isobaric surfaces dip down as the axis is approached.
In contrast, it is warm-cored in terms of potential temperature if
the atmosphere is stably stratified. These features help us to un-
derstand the low-level structures in the baroclinic case because
the vertical gradient of tangential wind speed is small at these
levels for the chosen wind distribution (indeed it is zero at the
surface).

As discussed in Section 1, some observations have shown a
reduction in the air temperature compared with that of the sea
in the inner-core region of tropical cyclones of up to 5◦C. The
foregoing calculation shows that a temperature difference of this
magnitude is to be expected simply as part of the balanced struc-
ture of a tropical-cyclone-like vortex (see, for example, Fig. 3b), a
factor that does not appear to have been considered previously.
Even though the gradient-wind balance assumption breaks down
in the tropical-cyclone boundary layer, the overall constraint

2Some care should be exercised in comparing the details of the plots in
height and σ coordinates as the vertical extent of the domain is a little
different.

Tellus 58A (2006), 1



102 R. K. SMITH

b)

a)

d)

c)

Fig. 3. Perturbation temperature along (a) the isobaric surfaces, (b) the level surfaces, (c) constant σ levels and (d) along level surfaces, but with the
anelastic approximation. Contour interval is 1 K. Additional contours from 0.05 to 0.25 K with an interval of 0.05 K are included in (a) to highlight
the radial temperature gradient at the surface.

above the boundary layer may remain important in determin-
ing the thermal structure of the core region.

A final question that we address is: how good is the anelastic
approximation as a basis for computing the balanced pressure,
density and temperature fields for a prescribed tangential wind
distribution? Figure 3d shows the temperature deviation at con-
stant height for an anelastic calculation following the method
outlined in Section 2.4, which should be compared with Fig. 3b.
These fields look very close and indicate that the method out-
lined is rather accurate. Specifically, the differences are largest
at low levels near the axis, where the anelastic approximation is
too cool by a maximum of 1.35 K at the surface. Above a height
of about 6 km the approximation is very slightly too warm by
a maximum of 0.35 K. Figure 4b shows the difference in the
potential temperature deviation calculated along level surfaces
with and without the anelastic approximation. For this field the
maximum differences are similar in magnitude, the anelastic ap-
proximation being too cool near the axis below about 4 km, with
a maximum discrepancy of 1.02 K at the surface, and too warm
above, with a maximum discrepancy of 0.82 K at a height of

9–10 km. Less accurate results were obtained with the anelastic
approximation by using a second-order finite difference form of
the second component of eq. (14) to determine ρ once the pres-
sure field has been determined from a radial integration of the
first component.

The forgoing result that the anelastic approximation is accu-
rate in the axisymmetric case suggests that it may be accurate
quite generally, the assumption of which should simplify the cal-
culation of the balanced density field of a prescribed asymmetric
vortex.

4. Conclusions

We have presented a simple method to calculate without approx-
imation the balanced density field of an axisymmetric vortex
given the tangential wind speed as a function of height and the
vertical density profile at large radius. Further, we have shown
how to obtain a relatively accurate approximation to this solution
by making the anelastic approximation.
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a)

b)

Fig. 4. Perturbation potential temperature calculated at constant z for
the exact calculation in Section 2.1 (a). Contour interval is 1 K. (b) The
differences that arise when the calculation is carried out using the
anelastic approximation. Contour interval is 0.2 K.

We used the method to calculate the density, temperature and
potential temperature fields for a prescribed tangential wind field
with scales appropriate to a moderately intense tropical cyclone.

When viewed in height coordinates or σ coordinates, the vor-
tex is cold-cored at low levels in the sense that the temperature
deviation along these surfaces is negative near the vortex axis.
However, it is warm-cored at upper levels. In contrast, the vortex
is warm-cored at all levels when viewed in pressure coordinates
and/or in terms of the potential temperature deviation. The bal-
anced vortex has a positive radial gradient of temperature at the
surface. A barotropic vortex in a stably-stratified atmosphere is
cold-cored at all levels when viewed in terms of the temperature
deviation at constant height or constant σ , but warm-cored when
viewed in terms of the potential temperature deviation along
these surfaces.

The low-level cold-core structure of a balanced, tropical-
cyclone-like vortex may explain, at least in part, the increased
sea–air temperature differences that are observed in a cyclone’s
inner core.
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