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ABSTRACT

A simple model 1s developed to investigate some of the features of the surface boundary
layer of a hurricane. The flow above the friction layer is represented by a steady cy-
lindrical vortex in which there is gradient flow, specified by suitably choosing the
radial pressure profile. It is assumed that the flow in the main vortex i1s approximately
geostrophic at large distances from the centre and the Ekman solution is taken as
appropriate for the boundary layer flow at these distances. A momentum integral
method is used to follow the boundary layer development to the centre regions of the
vortex.

Radial profiles of boundary layer thickness and induced vertical veolocity are ob-
tained when a constant eddy viscosity, K,,, is taken as characteristic of the turbulence
in the friction layer. Two surface boundary conditions are examined; the no-slip condi-
tion and the condition that the surface stress be in the direction of the surtace wind.
The former of these is found to be the more satisfactory and gives qualitative agreement
with observations. The effects of radial and vertical variations of K,, are discussed in
relation to the surface condition but an inadequate knowledge of the turbulent strue-

ture prevents a more realistic formulation of the layer at this stage.

Introduction

Observational data on hurricanes are still
somewhat iragmentary, due primarily to their
formation and subsequent motion over parts of
the tropical oceans, where recording stations
are few. The penetration of aircraft into these
storms 1n recent years has helped to supplement
knowledge about their structure (LaSeur, 1957;
Célon, 1961, Riehl & Malkus, 1961; Gray, 1966)
and although the detalled mechanisms are still
not fully understood, the broad scale features
have been identified. Figure 1 shows the main
regions of flow in the mature stage of a hurri-
cane. There i1s an immflow layer adjacent to the
ground, extending to a height of a kilometre or
two, 1n which friction plays an important role.
The main vortex is a much thicker layer, typi-
cally 10 km, containing cloud, with a radial
extent of order 100 km, in which there is little
mean radial motion (compared to that of the
surface layer) and mixing processes take place
on the scale of cumulus convective elements,
which have horizontal and vertical scales of
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order 10 km. The picture is completed by an
outflow layer below the level of the tropopause
and a core flow with a diameter ot about 40-80
km, free from cloud, with light winds and in
which there i1s a downflow of air close to the
axis (see e.g. Yanail, 1964). The hurricane may
be thought of as part of a larger system, which
includes the near environment m which 1t
moves and this will be termed the oufer flow in
this paper. This we suppose to have a radial
extent an order of magnitude larger than the
main vortex, say 1000 km.

We confine our attention to hurricanes in
which the isobars are nearly circular at each
level. In their mature stage, these systems show
a remarkable degree of symmetry, especially 1n
the main vortex, where azimuthal wvelocities
are high and centrifugal forces tend to preserve
roughly circular motion. In our model, the main
vortex 1s represented by a steady, axi-symme-
tric, potential vortex, which is stationary in a
fluid at rest and has a tangential velocity V.,
determined by the gradient wind equation,
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Vep= %Rf+(i:Rf | T
where R is the radial distance, f is the coriolis
parameter, ¢ the density of air and P is the
pressure. This vortex is a solution of the Kuler
equations of motion in a rotating frane of refer-
ence, in which there is no radial motion (U = 0)
and an arbitrary profile of axial flow, W(KR).
It can thus be taken as the flow at the top of
the inflow layer, with the radial variation of W
determined from boundary layer theory. Hence,
the flow is specified completely by choosing an
arbitrary pressure profile P(R), but this 1s done
so as to give a typical velocity profile through
Eq. (1).

Variations in f will occur along lines of longi-
tude since f =2 sin ¢, where () is the angular
rate of rotation of the Earth about its axis, and
¢ is the latitude. The relative change in f for a
small change in latitude 9, 18

of
7=00tq,'>'f5¢.

The total horizontal extent of the vortex may
be ~ 200 ki, although the extent of the vortex
and its outer flow region will be considerably
larger, say ~ 2000 km. Values of df/f correspond-
ing to these at 30° lat., are roughly .025 and .25
respectively. Thus whilst variations of f across
the vortex core are fairly small, variations over
the entire flow are not and in practice will result
in considerable asymmetry of the outer flow
region. Moreover, the interaction between the
vortex and the irregular zonal current in which
it moves serve to produce further asymmetries
in the motion, again especially in the outer flow
region. Nevertheless, much can be learned by
taking f constant across the entire flow and by
ignoring motions of the vortex and its environ-
ment. These assumptions are made here.

We shall not concern ourselves with the high-
altitude outflow layer or the core flow in this
paper.

Equation (1) denotes a balance between the
centrifugal and coriolis forces and the radial
pressure gradient, in the main vortex. Friction
offects near the ground disrupt this balance
locally, reducing the azimuthal velocity and
hence the centrifugal and coriolis forces, whilst
the pressure field of the main vortex 18 trans-
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mitted nearly unchanged through the depth of
the friction layer. Thus, there is a net pressure
gradient towards the core of the hurricane,
which drives a radial inflow in the boundary

'layer and a corresponding upflow at some inner

radil. |

The secondary flow, produced by the presence
of a rigid boundary perpendicular to the axis ot
rotation, is common to all atmospheric vortices
including tornadoes, dust-devils and water-
spouts. Changes in the main vortex produce
corresponding changes in the secondary inflow
and this provides a main source of fluid for the

- overlying vortex. This fluid, in the case of a

hurricane, is rich in moisture and is undoubtedly
a major factor in maintaining the vortex by
supplying large amounts of energy in the form
of latent heat of condensation at higher levels.
Thus, feedback effects of changes in the vortex,
due to the presence of a boundary, exert strong
constraints on the flow. It is clear, therefore,
that a proper treatment of the surface boundary
layer is essential to a correct formulation of
models for atmospheric vortices and, in parti-
cular, for any model of a hurricane. This paper
examines some of the features of the boundary
layer using a momentum integral method to
obtain an approximate solution for the flow.

A local Rossby number Ro, based on the
distance from the hurricane centre and the
local horizontal velocity at the top of the boun-
dary layer, can be used to divide the flow in this
layer into the following three regions:

I. A distant region (Ro<1) in which the
flow is approximately quasi-geostrophic,
that is, inertial terms in the equations of
motion are small compared to coriolis
and frictional terms and can thus be
neglected,

IT. A transition region (Ro ~ 1) in which the
inertial terms are of the same order as
coriolis and frictional terms and must be
included in the equations.

ITI. An inner region (Ro >1) in which coriolis

 terms are small compared to inertial and

frictional terms, which approximately
balance in this region.

An exact solution for the boundary layer in
the geostrophic region is the well-known Xkman
solution. A principal feature of this is that the
boundary layer thickness is proportional only
to the ratio (K,,/ A, where K,, is an eddy visco-
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sity characteristic of the turbulence in the
boundary layer. 1f f and K,, are constant, the
boundary layer thickenss is constant but varia-
tions in mainstream velocity produce a vertical
flow through the top of the layer, proportional
to the vertical component of relative vorticity
in the mainstream (Lighthill, 1966).

No exact solution exists in regions 11 and 111
where curvature and inertial effects require the
non-linear terms to be included in the flow
equations. In these regions the boundary layer
thickness will generally vary with radial distance
from the centre.

Haurwitz (1935) and later, Rosenthal (1962)
and Miller (1965) use a perturbation technique
to linearize the boundary layer equations 1n
regions II and 1II. An order of magnmtude
analysis suggests that these authors have ex-
cluded terms which are of the same order as
some of those they have retained in their equa-
tions.! Also they attempt to apply their solu-
tions to the region close to the axis where the
boundary layer equations are no longer valid
because radial stress terms are then important.
Nevertheless, the general validity of a perturba-
tion method of approach is more serious. The
secondary ftlow produced by axial boundaries
in vortex flows 1s not only more than a small
perturbation on an outer flow, but is of a com-
parable magnitude to 1t. Indeed, the essence of
boundary layer theory is to deal with O(1)
disruptions of flow at a rigid boundary.

A momentum integral method sacrifices ac-
curacy to a degree, but does not sutfer from the
need to exclude non-linear terms in the equa-
tions. However, it may only be applied with
confidence to flows in which the boundary layer
thickness varies slowly with radius. Thus, while
1t 1s of limited application to the suriace interac-
tion boundary layer of ‘long-thin’ vortices,
such as tornadoes and dust-devils, one may
expect good results when it 1s applied to a
hurricane where the boundary layer is extremely
thin in relation to the radial dimension of the
vortex, this ratio being of the order 10-3 or

1 In the azimuthal momentum equation, Rosen-
thal neglects the term W(0v,/22) in comparison with
v,(0vg/or +vo/r +f). Taking orders of magnitude
U, W and R, Z for radial and axial velocity and
length scales, the equation of continuity o(», r)/or +
d(rw)/dz =0, is satisfied only if U/R~W/Z. Then
W~UZ|R and w(0v,/0z) and v, (6ve/or +vefr+f)
have the same order of magnitude U2/R).
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smaller. In the treatment which follows, the
momentum integral technique 18 used to con-
tinue the Ekman layer solution for the geostro-
phic region into the two inner regions where
inertia terms in the equations cannot be neg-
lected. |

The mathematical problem

A systemm of cylindrical polar co-ordinates
(R, 68, Z), with corresponding velocity compo-
nents (U, V, W), is used and the flow is taken
to be steady and axi-symmetric (1.e. derivatives
with respect to time and 0 are zero).

The Ekman layer equations for the boundary
layer flow at large radial distances from the
centre of the vortex, are

2
e U
f(Ve—V)=Kn vl (2)
2
o’V
.fU:K:;J a'—Z_a: (3)
1dP
where Ve, = (4)
of AR

is the azimuthal (geostrophic) velocity above
the boundary layer at these distances and K3
i1s an eddy viscosity appropriate to the Ekman
region. (N.B. if dP/dR 1s small, V>~V from
Eqgs. (1) and (3), i.e. the gradient flow degener-
ates into geostrophic flow far out from the storm
centre.) For the present, K}, is assumed constant
but later we shall discuss the effect of vertical
variations of this quantity. Equations (2) and
(3) are non-dimensionalized with respect to the

usual Xkman length and velocity scales,
Zo( =(K§,;/f)‘}) and V.. Hence, 1f

V=V, U-=V,u, 24 =~Zz,
defining %, v and z, we have
2
cUu
l—-v= , 5]
-2 (5)
2
oV -
= 5. (6)
0z

The full boundary layer equations in a ro-
tating frame of reference are,
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UaU WaU | Ver—V* Y _ K o U be in the direction of the surface wind, that is,
o oz r Ve VITEus (U, v, 0)=a0/22) (U, V, 0), where o =K%/
(7) (CpVg) and Cp is the surface drag coefficient
aV a3V UV 3° (see Eliassen & Kleinschmidt, 1957). In terms
U 2R W 5 Z | R - f U=KM5‘_2 (8)  of non-dimensional variables, these conditions

These are derived from the Navier Stokes
equations with the assumptions that

> 1 a2 &

,...,._’ 1{
oR* RaR ~aZ*

and P

18 approximately constant across the boundary
layer. These will not be satisfied close to the
point of separation, where inflowing fluid meets
fluid flowing outwards from the core, in which
it has descended.

Equations (7) and (8) are non-dimensiona-
lized, again with respect to the Ekman scales
and with

R=R,r, V,.=V, v

er = Vglern W =(VgZy/Re)w,
K = K3, (allowing K,, to vary radially) to give

2 2
Ro(u—--!—w : )+fvgr—vg=k'—2

, (9)

or Vor 7 02
- 2
ov ov UuUv oV
Rolu— + w—A u=k—s;, (10)
or o= r 0z

where Ro =V, /(E,f) is a Rossby number for the
flow above the Ekman region, based on the
radius R, at which the full geostrophic approxi-
mation 1s applied (which we shall call the
geostrophic radius) and the tangential velocity
V., at this radius. The scale for W is obtained
from the euqation of continuity (see footnote 1,
p. 475) which in non-dimensional form is

2 2
— (ru) + — (rw)=0.
or " T 5 1)

(11)

As a first approximation we ignore the motion
of the sea, which is equivalent to treating the
sea surface as a rigid boundary. This is reason-
able as wind induced, velocities in the sea will be
several orders of magnitude less than those in
the vortex due to the large difference in density
air and water.

Two surface boundary conditions are exam-
ined; the no-slip condition, that is, U/ =V =0 on
- Z =0 and the condition that the surface stress

take the form

u=v=0 on z=90 (A)
kE\ o

and (‘u, v, O) = (E“'—) — (’U;, v, 0) ’ (B)
Vgr/ 02

where o = K7/ (Op Vg Z,) is a constant. We shall
refer to these boundary conditions as A and B
respectively and consider condition A first.
(N.B. condition B reduces to condition A if
x=10.)

The solutions to Eqgs. (5) and (6), subject to
condition A at the surface are

u= —e 22 gin (z/VE) ,
(12)

v=1-e"272 cos (z/l/2_) :

The momentum integral method, due to Kar-
man and Pohlhausen i1s a procedure for cal-
culating the boundary layer thickness when the
mainstream velocity 1is specified (see, e.g.
Schlichting, 1960). The boundary layer equa-
tions are integrated across the layer and suitable
velocity profiles, satisfying the appropriate
boundary conditions, are substituted into these.
The method is an approximate one as the pro-
tiles, providing they satisfy the boundary condi-
tions, may be chosen arbitrarily. Taylor (1950)
applied the technique to the boundary layer
flow in a converging nozzle and Mack (1962)
used Taylor’s method in ‘a study of rotating
flows above a finite disk. Mack obtains two
ordinary differential equations for the radial
variation of scales for the boundary layer thick-
ness and the radial inflow velocity when an
outer flow 1s specified. These equations are
solved numerically.

In this treatment we follow Mack, but take
Into account coriolis forces.

Combining Eq. (11) with Eqgs. (9) and (10)
gIvVes

| o Vap — 0
Ro [-——— (ru’) + — (uw) + — ]
ror o= r
+ B2 (13)
Vpp — V=K —3,
5t 92"
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Ro[}—i(r uv) + 9 (vw)]+u ka—? (14)

r or o0z 32;

These equations are integrated across the
boundary layer from z=0 to z=oc0 subject to
the boundary conditions

z=0; u=v=w=0,
(15)
z=00; u=0,v="0g, oujoz=0v/oz=0
to give
d 7 e
Rol— |r wdz) + (Vgr— v ) dz
dr 0 0
> cU
4- f r(V., —v)dz — =kr (——) (16)
0 02 | 50
d cQ
Ro [c@ (?Efﬁ m:dz) + 7 Vg wgr]
[ ov
+f rudz——kr( ) , (17)
0 02/ 2=0
1d * )
where Wy = (rf udz) (18)
r dr 0

is the non-dimensional vertical outflow velocity
at the top of the boundary layer. We now in-
troduce a non-dimensional scale thickness
0 =0(r) for the boundary layer and use the
Karman 7'-method described by Mack to repre-
sent the velocity components, that is we write,

== 'Ugr(?') E(?‘) f(ﬂ) ) }

(1, m) =V (r) 9(7)

u(«r, 77)
(19)

where KE(r) is the amplitude coefficient cf the
radial velocity, n=2/0 and f(n), g(n) are the
velocity proifiles across the flow. For these we

take the Ekman profiles with 2/ I/E replaced by
z [0, thus

fin)=—e™"

Sinn,
g(n)=1-¢""cosy.

On substituting Eqs. (17) into Eqgs. (14), (15)
and (16) we obtain the following ordinary dif-
ferential equations for H, § and w,,:

(20)
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d
Ko [&; (rvgs B'6) I, +v§r612] + 7V 0 1

B krvg,. E/(0)

21

5 (21)

d d
Ro &}(fr ver B8 I, — C—i}(wgrEd)Iﬁ

k 2

+ 70 0E I, iP(,;ugrs?"(()) , (22)
I.d

Wer — - dr (rVgp £0) , (23)

o0 o0
where I, = f fdn, I,= f (1-¢°)dn,
’ 0

Iﬁf (L-g)dn, I, “f fgdn, f /dn.

0
After some manipulation, Egs. (21) and (22)
are written as two simultaneous first order
equations in the variables " and E§, thus

1 d _, 2[d .o . d H]
25 (B7) = — —=3| - (rv") - Bv——(rv)

E dr rv- l dr dr
24 2X\; 2Y 2(C+Dky
- ~ =t —= ~— 2 (24)
T v ¢ p vHS
L2 w8 - 2| ) - 3B ()
= — ry ) — v— (v
ES° dr rvldr v dr
A X\1 3Y C+3Dk
=+ ) o - s (25)
r v/ K v v
where v =R, v,, and
Az-‘I“E B_2I4'—IE _f’(o)
Il . I-:._'Is I1
(0 I I
D= g'(0) X - _3’ YV — 5
I.—1, I, I,—1,

Also, Eq. (23) reduces to

w s [ch ES ((I—B)d (r%})—Y)]. (26)
8t Ro d r dr

-1,

With profiles given by Eqgs. (20), f/(0) =
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Fig. 1. The main regions of flow in a mature hurricane (see text). Arrows indicate the vertical circulation

of air in the system.

g'(0)=1 and I,=%, I,=%, I,=%, I,=-4%§,
I.=—-1.

If boundary condition B is taken at the sea
surface, the profiles for v and v are

f(n)=ce "(a, sin 1 +a, cos n),
(23)
g(n)=1-ce "(a, cos 5 +a, sin n),

where c=1/(1+V2y+9%),a,=1+5/V2,a* =y /V/2
and y = v, [ak.

With these profiles,
/' (0)=cla,—a,), 9’(0)=cla,—a,) and
I,=% cz(tﬁ + 2a.a, + 3a;),
I,=c(a, +a,)—}c’(3a: + 2a,a, +a3),
I,=%c(a, +a,),
I,=3%c(a:+ da,a, +a3) —} cla, +a,),
I;=—-%cla,+a,).

In this case, the quantities 4, B,C, D, X, Y
in Egs. (24) and (25) are functions of 7.

Pressure and velocity profiles

It remains to choose a realistic profile for the
radial pressure variation. In any two (or multi)
—layer hurricane model, the pressure profile
p(r) would be given by that in the flow region

(assumed cylindrical) just above the boundary
layer, detaching the behaviour of the boundary
layer from that of the hurricane as a whole.
This is justified only in the steady problem
described here. In fact, the flow in the main
vortex 1s strongly coupled with the flow in the
boundary layer for reasons discussed in the
introduction. Thus the behaviour of the flow
in the inflow layer may be expected to play an
important role in determining the structure of
the entire hurricane during its time develop-
ment. 1t is sufficient to take a profile which has
the general form of those observed in typical
hurricanes, that is, the pressure decreases out-

- wards from the centre and the pressure gradient

increases rapidly from zero to a maximum at a
radius just outside the core, then decreases
more slowly with B until a geostrophic balance
18 attained at large radii, typically 1000 km or
more. Thus the swirling component of velocity
in the main vortex increases from zero at the
centre to large values slightly beyond the radius
of maximum pressure gradient and then decrea-
ses gradually with increasing R.
Guided by this form we take

P(R) = P, + (P, —P,) eb—Fm/R) (28)

where P, is the pressure at the centre, P, the
pressure at the geostrophic radius R,, x» is a
constant chosen to make the azimuthal velocity

above the boundary layer a maximum at
R =R,, and b =R,/R_. This form is essentially

Tellus XX (1968), 3
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Fig. 2. The profile of swirl velocity, V., at the top of the boundary layer.

the one found by Rosenthal (1962) to give a
good representation of the radial variation of
the gradient wind V., obtained from Egq. (1).
Making Eq. (1) non-dimensional with respect

to the scales used in the last section, and using
Eqg. (28) to obtain dP/d R, we have

mxh

~ 2
v =FRo v, = —-{;fr+(;§fr | .

b3
BHb(l“ (lf‘r))) , (29)

where m=((P,-P,) /o)/Rsf. But, by the
choice of scales, v,, =1 when =1 so that

R, = — %+ (3 + mxb)t. (30)

If dvg,./dr=0 at r=b, then it is easy to show
that » statisfies the equation

mae(re — 1)%*® "V _ (2 _5) b2 =0 (31)

and 1 <x<?2.

Boundary conditions and
method of solution

Taking the Ekman solution (Eq. (12)) at
r=1 (1e. B=R,) gives starting values K =1

Tellus XX (1968), 3

and 6 = }/2. Since, however, Eqgs. (24) and (23)
include inertial terms, the derivatives of E2? and
Eé? are not zero with these values, as would be
the case for strict geostrophic flow; indeed their
absolute values are quite large. The explanation
lies in the fact that each is the difference of two
large terms (i.e. the viscous and coriolis terms)
and this makes the equations somewhat un-
stable 1n the starting region. A remedy can be
tound by choosing the derivatives to be zero at
r =1 and calculating the corresponding values
of K% and £4? from Eqgs. (21) and (22). (This
gives sensible results since dwv, /dr <1 when
r =1 in the cases considered.) These turn out
to be of the form K2 =1 +¢,, Hd%2 =2 +¢, where
£1, €2<1. These values are then used as starting
conditions at r =1 and the solution of the two
differential equations (21) and (22) is advanced
radially imwards by a stepwise integration
routine on the Manchester Atlas Computor.

Discussion

The azimuthal velocity profile (Fig. 2) is
computed for a hurricane vortex defined by Eq.
(28) with P, =940 mb, P, =1000 mb, R, =1000
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Fzg. 3. Profiles of non-dimensional scale boundary layer thickness, §, in the four cases: A (1), A (1), B
(1), B (11). A ="'no-slip” at the surface; B =surface stress in direction of surface wind; (i) eddy viscosity, K,,,
radially constant; (ii) K, increases inwards by a’factor of two between 1000 km and 40 km radii.
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Fig. 4. Profiles of scale inflow velocity, EV,., in the boundary layer. Legend as for Fig. 3.
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Fig. 5. Profiles of vertical velocity W, through the top of the boundary layer. Legend as for Fig. 3.

km, R, =40 km, ¢ =.0012 gm/cc at 21°C and
f=5x10-% (typical of about 20° lat.). The
velocity increases rapidly from zero at the
centre to a maximum of 43 m/sec at 40 km and
then decreases more slowly to about 4 m/sec at
1000 km. | .

A Rossby number for the entire tlow, given
by Eq. (30), 18 Ro =7.8 x 102,

Figures 3, 4 and 5 show the varnation of non-
dimensional scale boundary layer thickness o,
scale inflow velocity £V, and upilow velocity
W, respectively. The four curves in each figure
correspond to the solution, with one of the sur-

face boundary conditions, A or B and with;

(1) the eddy viscosity K, a constant, equal
to 50 m?2/sec, or,

(i1} K,,; increasing linearly from 25 m?/sec at
the geostrophic radius to 50 m?/sec at the
radius of maximum velocity.

Tellus XX (1968), 3

The value of Cp in boundary condition (B) 1s
taken as 2 x 10-3, These orders of magnitude
for K,, and Cp, seem to be supported in the litera-
ture and references are given by Rosenthal
(1962).

The solution for the case A (i), in which the
no-slip condition at the surface is combined with
a constant eddy viscosity, 1s equivalent to that
for a laminar viscous boundary layer, produced
by a rigid boundary perpendicular to the vortex
axis. In the latter, the kinematic viscosity », is
replaced by the eddy viscosity K,, and the only
difference between the laminar and turbulent
flow 18 one of scale. The boundary layer thick-
ness decreases towards the centre (Fig. 3), slow-
ly at first, but more rapidly as the swirling ve-
locity gradient above the layer becomes larger,
until it is about one fifth of its geostrophic
value at the maximum swirl radius. The scale
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Fag. 6. Logarithmic profiles of the ratio [inertial term/coiolis term] in the radial () and transverse
(v) momentum equations compared with the logarithmic profile of the local Rossby number.

radial velocity EV.., (Fig. 4) increases from
about one third of the local azimuthal com-
ponent Vér, to a comparable magnitude, over
this range. There is a small downflow surround-
ing the main vortex, with mean velocities of the
order 4 cm/sec and an upflow at smaller radii,
reaching a maximum of just over 1 m/sec at
about 13 km from the centre. Observations
suggest that the maximum upflow occurs near
the maximum swirl radius (Gray, 1966), but the
discrepancy of our model is not surprising for
two reasons. Firstly, in our representation of
the hurricane vortex, we have taken no account
of the core flow, in which there is a small down-
flow and consequently, a small outflow near
the surface. Thus, there must be a small reversed
pressure gradient in the “‘eye’ and some ‘‘stag-
nation radius”, at which incoming boundary
layer fluid meets outflowing fluid from the
“eye’’. We may conclude, therefore, that the
core tlow serves as an obstacle for the incoming
fluid and this would cause the radius of maxi-
mum upilow to be displaced outwards. Secondly,
care must be taken not to apply the solution too
near the stagnation radius, or the centre, where
radial stress terms become important and must
be included in the equations. Indeed, it is for

this reason that the curves in Figs. 3-6 have
not been drawn in a neighbourhood of the axis.

The inflow velocities computed in the case
A (i) seem too large compared with those in
actual hurricanes (Miller, 1958). Tt is likely that
this 18 a result of taking the eddy viscosity
constant with height as well as with radius. In
a turbulent boundary layer, K,, will in general
vary with position and to a first approximation,
the layer may be divided into two sublayers; a
relatively thin layer adjacent to the surface
where vertical gradients of velocity are large
and K, 1s small and increases linearly with
height; a much thicker layer where velocity
gradients are small and K,, is large and may be
treated as a constant. In the atmosphere, the
lowest layer extends upwards to a few tens of
metres whilst the upper layer may be up to a
kilometre in depth (see, for example, Rohl,
1965). By taking K,, large and using the no-slip
condition, we are overestimating the momentum
transport to the surface. As a result, we overesti-
mate the disruption of the net pressure field
near the boundary and obtain too much inflow.

An attempt to overcome the problem of the
lower sublayer is made by taking the less restric-
tive condition (B) at the surface, or more pre-
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cisely at the top of this sublayer. This condition
18 used by Rosenthal (1961). Profiles for the case
B (1) are shown in Figs. 3-5. The boundary
layer “‘erupts’ before it reaches the radius of
maximum tangential wind; that is, the boundary
layer starts to increase very rapidly (Fig. 3); the
maximum inflow is attained at 120 km from
the centre and this, together with the upflow is
far weaker than in the case A (i). This “‘erup-
tion”” of the boundary layer so far from the
centre i1s not observed. Its occurrence in the
model B (1) 18, however, not surprising. Although
the boundary condition (B), together with a
constant K, serves a useful representation in
parallel flows when there is no transverse pres-
sure gradient, 1t may be of limited application
to flows in which transverse pressure gradients
are strong, as 1s the case of vortex flows. The
largest distortion of the net pressure field, due
to the presence of the boundary, occurs in the
region of largest velocity shear and this is in
the sublayer. Thus, by taking a model for the
turbulence above this layer we will obtain a
considerable underestimate of the inflow.

It 1s clear that a more sophisticated descrip-
tion of the vertical structure of the turbulence
18 essential to a satisfactory formulation of the
inflow layer. This can only come after many
more observations have been made in this
region. |

It seems unlikely that K,, may be regarded
as a constant over the whole extent of the storm
and its environment. Nevertheless, little is
known about the radial variation of K,, in actual
hurricanes. Miller (1965) takes K,, to increase
towards the storm centre and we have examined
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the simplest case here, in which K,, increases
linearly by a factor of two between the geostro-
phic radius and the radius of maximum tangen-
tial wind. The effect in case A (ii) is to increase
the inflow considerably in the inner region, and
consequently the uptlow, compared with the
case A (1). In the case B (ii1), we obtain reason-
able profiles of radial and vertical velocity, but
the remarks of the above paragraph concerning
this boundary condition still hold. Whilst no
real inferences can be made at this stage, it is
interesting to note the ease with which a radial
varying K,, may be incorporated in this model
and the latter should be useful in testing theories
of the turbulent structure of the inflow layer,
when these can be better compared with obser-
vations.

Figure 6 shows the relative importance of
inertial to coriolis terms in in the two momen-
tum equations (21) and (22) and compares this
ratio with the local Rossby number V. /Rf, in
the case A (i). With these curves, one may easily
1identify the extent of the three regions of flow
in the boundary layer, I, IT and II1, which are
described in the Introduction. Moreover, coms-
parison. of the ratio (inertial term/coriolis term)
in the radial momentum equation, with the
local Rossby number, demonstrates the useful
scaling properties of this quantity.
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I[IOTPAHNYHBIN CJI0N HA TIOBEPXHOCTU YPATAHA

PasBuBaeTca npocrasg MOJAeNb MJA MCCIET0Ba-
HUA HEKOTOPEIX O0CO0EHHOCTEel NOTrpaHMYHOro
CJIOA Ha MOBEPXHOCTH yparana. TedeHue Hap
CJI0eM TPEHUA NPEICTABIAETCA IMUKIOHUYECKUM
BIXpeM, B KOTOPOM TeueHHEe HABJIAETCA TIpa-
TUEHTHLBIM, OllpemeIAeMBbIM IOIXOAAINAM BHIOO-
poM pagMajdbHOTO npoduiaa paBiaeHad. Ilpex-
10J1araeTcs, 4YTO IIOTOK B TIJaBHOM BUXpe
ABJIACTCA MNPHUOJINBUTEIBHO TIe0CTPOPUICCKUM
Ha OOJBIIKX PACCTOAHUAX OT LEHTPA BHUXPHA U
MJIA MOrPAaHUYHOIO CI0A HA 9TUX PACCTOAHUAX
Oeperca pemnennme SkMaHa. JiA npocie;xkmnBa-
HUA PA3BUTHUA IOTPAHMYHOTO CIIOA KO LHEHTPAID-
HBIX 00J1acTeil BUXPA MCHONB3YETCA WHTErpPaib-
HBIM MeTOoJ MMIY.JhkCA.

IlonydeHBl papumadbHBle NPOPUIM TOJIMIUHEL
IIOTPAHMYHOrO CJIOA U MHIYLUPOBAHHLIE BEpPTH-

HAJbHBIE CKOPOCTH MJA CJay4yas, KOTMa B Ka-
YeCTBe XapaKTEPUCTHUKU TYPOYIEHTHOr0 CJIOA
TPEHUA B3ATA IMOCTOAHHAA TypOyJjeHTHAasd BA3-
KOCTb Ky, lccnemoBaHH JBa I'PaHUMYHEIX YCJIO-
BUs Ha IIOBEPXHOCTHU: YCJOBUE NPUIUINAHNA U
yCIOBNE, YTO HAOPAMKEHNEe HA IOBEPXHOCTH
COBHIAMAET II0 HANPAaBJEHWUI0 C BETPOM Y IIO-
BepxHocTH. HalimeHo, uto mnepsoe YCJIOBUE
6oJlee YHOBIETBOPHUTEJNLHO U AT KaYeCTBEH-
Hoe coraacue ¢ HadIdwgeHEusamu. B ¢BA3u c
YCIHOBHAMHU HA MOBEPXHOCTU OOCYyHmawTcsa dd-
QeKTEl pAMMANILHBIX ¥ BePTUKAJbHBIX BapHaluii
£, OBHAKO, HEOCTATOYHOE 3HAHUE CTPYKTYPHL
TYpPOYIIEHTHOCTN HAa JaHHOM 9Talle He MO3BOJIHAET
nath 0oJjiee peaJMCTHUYECKOTO ONMMCAHUA CTPYH-
TYPHl HOTPAHUYHOTO CIO0A.




