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Summary

A simple two-layer analogue model is used to elucidate aspects of vortex motion in a vertically-
sheared zonal ow. The model is based on the idea that a vortex can be considered as the sum of a
pair of barotropic vortices, one whose vorticity, or potential vorticity, resides in the upper layer and the
other resides in the lower layer. Each vortex has an associated tangential velocity distribution in the
other layer, which advects the vortex in that layer. The strength of this velocity distribution is charac-
terized by a coupling parameter, which, in the case of quasi-geostrophic vortices, is related to the Rossby
depth scale. Besides their mutual advection, the component vortices are di�erentially advected by ver-
tical shear. The model leads to a set of coupled ordinary di�erential equations for the motion of each
component vortex, which may be solved analytically in certain circumstances. The calculations indicate
two types of ow behaviour according to the strength of the component vortices, the degree of vertical
coupling and the strength of the shear. For weak shear and/or strong vortices and strong coupling, the
vortices rotate around each other as their mean centre translates with a fraction of the mean zonal ow.
For strong shear and/or weak vortices and weak coupling, the vortices undergo a partial rotation while
they are in proximity, but become progressively separated by the shear. The calculations are an aid to
understanding the range of behaviour of vortices in shear in numerical calculations by other authors and
it is reasonable to presume that the processes represented by the model are fundamental processes in
tropical cyclones also.

The analogue model is evaluated in the context of quasi-geostrophic theory, where the breakdown
into the component vortices can be accomplished and where the complete problem can be solved nu-
merically without approximation. The results of the quasi-geostrophic model are contrasted with those
of other recent studies of baroclinic vortices in the absence of vertical shear.
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1. Introduction

In recent years there has been a number of numerical modelling studies of vortex mo-

tion in a vertically-sheared environmental ow directed towards understanding aspects of

hurricane motion. The basic thought experiment considers the subsequent motion of an

initially-symmetric and upright vortex when subjected to uniform shear on an f-plane or

on a beta-plane. A variety of models has been used (e.g. two-layer, multi-level), some of

them dry (Wu and Emanuel, 1993; Wang et al., 1993; Jones, 1995, 2000a,b; Dengler and

Reeder, 1996; Wang and Holland, 1996) and others including a representation of moist

processes (Flatau et al., 1994; Shapiro, 1992; Dengler and Reeder, 1996). Some of the dry

models begin with a barotropic vortex (e.g. Jones, 1995; 1999a) while others begin with

a baroclinic vortex whose strength decreases with height (e.g. Dengler and Reeder, 1996,

Jones, 2000b). Not surprisingly, a range of behaviour has been reported depending on the

particular model formulation and on the particular choice of parameters. For example,

Madala and Piacsek (1975) showed that under the inuence of easterly shear, a vortex

on a beta plane has a more polewards track than in the corresponding calculation for

a quiescent environment. An additional component of motion to the right of the shear

was found also in calculations by Shapiro (1992) and Wang et al. (1993). In contrast, in
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the calculations by Wu and Emanuel (1993) and Flatau et al. (1994), vortex motion is

to the left of the shear vector. A succinct review of the earlier papers is given by Jones

(1995) who reconciles the di�erences in the foregoing calculations and elucidates various

mechanisms that are important.

In some of the calculations (e. g. those of Shapiro, 1992, and Flatau et al., 1994) the

vortex motion is inuenced strongly by the presence of a meridional gradient of potential

vorticity (PV), the sign of which depends on the curvature of the shear pro�le. The ad-

vection of PV by the tangential circulation of the vortex gives rise to an azimuthal wave

number one PV-asymmetry, which has an associated ow component across the vortex

centre in a direction related to that of the ambient PV-gradient. This cross-vortex ow

component contributes to the vortex motion as in the case of a barotropic vortex (see

e.g. Smith, 1993).

Another mechanism elucidated by Jones op. cit., which appears to account for the

vortex motion in the f-plane calculations she carried out, is associated with the vortex tilt

produced by the shear. Again the ow evolution may be interpreted using PV-thinking

(Hoskins et al., 1985). Initially, the vortex, either barotropic or baroclinic, is tilted in

the plane of the shear following which the upper- and lower-vortex centres begin to ro-

tate about each other. This mutual rotation can be understood in terms of upper- and

lower PV anomalies associated with the tilted vortex which are displaced in the hori-

zontal relative to each other. The ow associated with the vertical projection of each

anomaly advects the other anomaly. The strength of this mutual rotation of the upper

and lower vortex centres increases as the penetration depth of the anomalies increases.

In geostrophic vortices, the penetration depth is proportional to the length scale of the

anomaly, the Coriolis parameter and inversely proportional to the static stability, whereas

for stronger vortices it increases as the local inertial stability increases rather than the

Coriolis parameter alone (Shapiro and Montgomery, 1993). A similar mechanism was

explored by Wu and Emanuel (1993) in a two-layer quasi-geostrophic model in which a

hurricane is represented by a point source of mass and zero-PV air in the upper layer,

co-located with a point cyclone in the lower layer. In the presence of vertical shear, a

plume of zero-PV air streams away from the cyclone. The plume is distorted by the cir-

culation induced by the cyclone in the upper layer, while the cyclone is advected by the

ow induced by the plume in the lower layer. In this case the di�erential advection of

the lower cyclonic vortex and the upper anticyclonic plume it produces account for the

motion of the cyclone to the left of the shear, whereas, in the calculations for a cyclonic

vortex only by Jones op. cit., the di�erential advection accounts for the motion of the

lower vortex to the right of the shear. Flatau et al. (1994) attribute the motion to the

left of the vertical shear in their calculations to this mechanism.

Some authors explore mechanisms by which vortices can resist the e�ects of vertical

shear. Flatau et al. (1994) and Wang and Li (1992) suggest the vertical circulation in-

duced by the tilt can help the vortex to remain vertically coupled, but they do not explain

how this coupling arises, while Wang et al. (1993) argue that the circulation is such as

to oppose the tilting e�ect of the shear. Jones op. cit. shows that while the circulation

opposes the tilt at early times, the situation is complicated because the plane of the tilt

rotates as the upper- and lower vortex centres rotate about each other. Moreover, the

vertical circulation depends on the direction of tilt, not on the direction of the shear. As

a result, after a period of time the upper vortex centre lies upshear of the lower centre

whereafter the shear contributes to a period of vertical re-alignment of the vortex.

The present paper seeks to isolate the tilting mechanism described by Jones (1995),

which appears to explain much of the behaviour in the various models. To elucidate

this mechanism further we formulate an analogue system of equations based on a sim-
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ple model for a pair of interacting line vortices, or a pair of axi-symmetric distributed

vortices, the upper one situated in a uniform ow and the lower one in an environment

at rest. In the model, described in section 2, the two vortices are arti�cially coupled by

assuming that the upper vortex has a component of velocity at its centre equal to some

fraction � of the velocity associated with the lower vortex and vice versa. The case of

vortices with a radial distribution of vorticity is considered in section 3, where the ideal-

ization is made that the vortices are not permitted to distort each other. We show that

many features of the behaviour of vortices in vertical shear may be understood in terms

of this model. In section 4, calculations are presented for the case of a sheared vortex in

a quasi-geostrophic model where the interaction parameter � and the full structure of

the component vortices, including the displacement of the interface between them, can

be determined. Detailed comparisons are made between the predictions of the analogue

model for this case and the full numerical solution of the problem. Finally, in section 5, we

contrast the quasi-geostrophic calculations to previous ones that address the dynamics

of baroclinic vortices without vertical shear.

2. An analogue model

To understand the subsequent motion of a vortex in a vertically-sheared environment,

we formulate the following thought experiment illustrated in Fig. 1. Consider two coupled
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Figure 1. Flow con�guration in the analogue model for vortex motion in vertical shear in a two-layer
model. The thick solid lines represent line vortices of circulation strength 2��n in layer-n (n = 1,2) with
a projection of strength 2���n in the other layer, indicated by a thinner extension. A uniform zonal ow
U2 in layer-2 advects the upper vortex (vortex-2) to the east. In addition, this vortex has a component of
motion V2 at right angles to the line joining the two vortices, a result of the ow at its centre associated
with vortex-1 in the upper layer. There is no basic ow in the lower layer and vortex-1 translates with

velocity V1 associated with the ow of vortex-2 in layer-1.

barotropic ows, one of them lying on top of the other. Suppose that the upper ow

consists of a point vortex with circulation 2��2 in an otherwise uniform stream with

speed U2, while the lower ow consists only of a point vortex with circulation 2��1. We
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imagine the vortices to be coupled in such a way that the upper vortex has a component

of motion equal to a fraction � of the velocity of the lower vortex at its location, and vice

versa. The idea would be that the two vortices are initially co-located (or at least close

together, but become separated because of the basic state velocity di�erence U2 between

the layers. As a result, each is inuenced to a degree by the rotation �eld of the other

vortex, and this a�ects their subsequent motion. In this section we present an analytic

theory for the motion.

The foregoing model is a thought experiment, or analogue model, because, with the

chosen coupling, the vorticity of the upper (lower) vortex would be singular in the lower

(upper) layer. The implied singularities in the other layer are conceived as a fundamental

part of the vortex and are not allowed to become detached from the parent vortex by the

relative motion between the layers. This assumption is not as unrealistic as it might �rst

seem and is in line with the idea that, in a more complete theory, a potential vorticity

anomaly in one layer has an intrinsic ow signature in the other layer that moves with

it (see e.g. Hoskins et al., 1985, section 4). We return to this point in section 4, where a

more complete theory is presented for quasi-geostrophic vortices.

Let the vortices be located at the positions x1 = (x1; y1) and x2 = (x2; y2) at time t

and let their velocities at that time be (u1; v1) and (u2; v2). Then their motion is governed

by the four coupled ordinary di�erential equations:

(u1; v1) =
d

dt
(x1; y1) = �

�2

r
(sin �;� cos �) ; (1)

(u2; v2) =
d

dt
(x2; y2) = (U2; 0) + �

�1

r
(� sin �; cos �) (2)

where r = jx2 � x1j is the horizontal separation distance between them and � is the

angle between the line from vortex-1 to vortex-2 and the positive x-axis (see Fig. 1).

Setting X = x2 � x1 and Y = y2 � y1 and noting that cos � = (x2 � x1) =r and sin � =

(y2 � y1) =r, Eqs. (1) and (2) become:

d

dt
(x1; y1) = �

�2

r2
(Y;�X) ; (3)

d

dt
(x2; y2) = (U2; 0) + �

�1

r2
(�Y; X) ; (4)

It will be seen that � is not really necessary: it could be absorbed into the de�nitions

of �1 and �2. However, it will be convenient to retain it as a measure of the vertical

coupling between the two vortices. Given the initial values of x1; y1; x2; y2, Eqs. (3) and

(4) can be integrated forward in time using standard techniques (e.g. a Runge-Kutta

algorithm). However, because a point vortex is singular at its centre, we cannot allow the

vortices to be co-located initially, otherwise the equations would be singular when r = 0.

This diÆculty is circumvented in section 4 by using vortices with a continuous vorticity

distribution. De�ne x= (�1x1 + �2x2) = (�1 + �2) ; y = (�1y1 + �2y2) = (�1 + �2) ; to

be the weighted-mean position of the two vortices, or vorticity centroid. Then adding

appropriate multiples of the x- and y-components of (3) and (4) gives

d

dt
(x; y) =

��
�2

�1 + �2

�
U2; 0

�
; (5)

Thus the weighted-mean position moves with a uniform speed [�2= (�1 + �2)] U2 in the

x-direction. In particular, for vortices of equal strength, the mean position moves with a
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uniform speed 1
2
U2. Subtracting the components of (3) from the corresponding ones of

(4), gives
dX

dt
= U2 �

A

r2
Y; (6)

and
dY

dt
=
A

r2
X; (7)

where A= � (�1 + �2) is a constant and r2 =X
2 + Y

2. Equations 6 and 7 characterize

the motion of vortex-2 relative to vortex-1. Upon division, these equations reduce to the

single nonlinear ordinary di�erential equation

dY

dX
=

X

� (X2 + Y 2)� Y
; (8)

where

�=
U2

A
=

U2

� (�2 + �1)
: (9)

With the substitution w =X
2, Eq. (8) reduces to the linear equation

dw

dY
� 2�w = 2Y (�Y � 1) ; (10)

which has the solution:

X
2 + Y

2 = ce
2�Y

; (11)

where c is a constant. Possible trajectories of the upper vortex relative to the lower one,

(X, Y), are shown in Fig. 2. In the discussion that follows we refer to the X-direction as

east and the Y-direction as north. Of interest is the 'critical curve' that passes through

Figure 2. Trajectories (X(t); Y (t)) of the upper vortex relative to the lower one for di�erent initial
positions. The critical curve is marked in bold. The axes have been scaled by 1/� so that the critical

point is at (0,1). See text for discussion.

the critical point (0,1/�) of the equation, namely X2 + Y
2 = �

�2
e
2(�Y�1). The axes in

the �gure have been scaled by 1/� so that the critical point is at (0,1). The phase space

can be divided into three regions delineated by the critical curve: one where the upper
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vortex approaches the lower vortex from the west, passes to the south of it, south of the

critical curve, and continues moving to the east after the encounter; another where the

upper vortex passes to the north of the lower vortex, north of the critical curve, before

continuing on to the east; and a bounded region enclosed by the critical curve in which

the relative trajectories are closed loops and the two vortices rotate around each other.

In the �rst case the upper vortex is accelerated by the circulation of the lower one during

their encounter, while in the second case it is decelerated. The fact that the two di�eren-

tial equations, (6) and (7), are singular at the origin means that there is not necessarily

a critical point inside these loops. Which region the trajectory is in will depend on the

starting positions of the two vortices. In summary, the motion of the two-vortex system

is composed of a rotation of each about the mean position (x(t); 0), which translates at

speed [�2= (�1 + �2)] U2 in the x-direction. Whether or not complete rotations are per-

formed depends on the initial position of the vortices. If they are suÆciently close initially

they will rotate around each other. The linear scale of the region enclosed by the critical

curve in (X, Y) space is proportional to 1=�. Therefore, 'suÆciently close' depends on

the magnitude of this quantity, which is proportional to the average vortex strength, the

magnitude of the coupling parameter �, and inversely proportional to the strength of

the wind in the upper layer, U2. It follows that mutual rotation is favoured by vertical

weak shear, strong coupling and strong vortices. If the vortices are not suÆciently close

initially, they will not undergo a complete rotation.

One can determine the rotation rate by noting that the angle � subtended by the

upper vortex relative to the lower one is given by tan� = Y=X . Di�erentiating this ex-

pression with respect to t and using Eqs. (6),(7),(8) and (11) gives

d�

dt
=
A

c
(1� �Y )e2�Y (12)

It follows that for �Y � 1, the rotation period is approximately constant, equal to 2�c=A

and that it decreases as �Y increases.

As explained earlier, the foregoing analogue model is conceived as an aid to under-

standing aspects of the interaction between a tilted vortex and a vertical shear ow. We

emphasize again that the coupled pair of singular barotropic vortices does not constitute

a complete model for the two-layer system and at this stage the model cannot represent

the case where the vortices are initially co-located, corresponding to the situation in

which a vortex with continuous vertical structure has no initial vertical tilt. In the next

section we present some solutions for the case of distributed (i.e. non-singular) vortices

where the vortices are initially co-located. Then, in section 4, we show that a similar,

but more complete theory can be worked out for a quasi-geostrophic system where it

provides a useful �rst approximation to numerical solutions of the full equations.

3. Distributed vortices

It is possible to carry out calculations similar to those in sections 2 for non-singular

vortices with a continuous vorticity distribution. Then Eqs. (1) and (2) must be modi�ed

by replacing �n=r by vn(r), the tangential velocity of vortex-n at radius r. If vn(0) = 0,

calculations of the resulting ordinary di�erential equations, analogous to (6) and (7), can

be carried out with the vortices in each layer initially co-located. As before we assume

that the distortion of the relative vorticity �eld of one vortex by the velocity �eld of the

other can be neglected in as much as the evolving ow asymmetry makes a negligible

contribution to the motion of that vortex. The assumption is shown to be valid in the



QUARTERLY JOURNAL STYFILE 7

case of quasi-geostrophic vortices studied later in section 4, although it may not always

be justi�ed (e.g. Jones, 1999a).

Figure 3. Trajectories of the upper and lower vortex centres for a pair of distributed vortices of equal
strength that are initially co-located. The track of the upper vortex is marked by '�' symbols every 6
h; the lower vortex by a cyclone symbol. Symbols '�' mark six hourly positions of a point that is purely

advected by the upper ow with speed U2.

Figure 3 shows the tracks of the upper and lower vortices in runs where the pro�les

of vn(r) are both chosen to be the same as the vortex studied by Smith et al. (1990)

with the tangential wind speed increasing from zero at the centre to a maximum of
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vm = 40ms�1 at a radius rm of 100 km and a speed of 15ms�1 at a radius of 300 km.

The pro�le for these values has the functional form v(s) = vmsa(1 + 3b2cs4)=(1 + bs
2 +

b
3
cs

6)2 where s= r=rm and a, b, c are constants (here a= 1:7880; b= 0:3398; c= 0:0137).

The magnitude of U2 is 4ms
�1 and tracks are for various values of the coupling parameter

�. When the coupling is strong, i.e. for relatively large values of �, the vortices rotate

rapidly around each other as their mean position translates at the same speed as predicted

by Eq. (8). This can be seen by comparing the tracks with that of a hypothetical air

parcel that translates with the speed U2, shown also in Fig. 3. As the coupling strength

is reduced holding other quantities �xed, the period of mutual rotation decreases until a

value of � is reached for which the vortices separate, as in the case of singular vortices.

One can carry out a similar phase-space analysis to that in section 2, but the analysis

must be carried out numerically. The results of such a calculation are displayed in Fig. 4,

where again the abscissa and ordinate have been scaled so that the critical point (0; yc)

Figure 4. Legend as for Fig. 2, except for the distributed vortex calculation described in section 3. The
arrows indicate the distance travelled by the upper vortex relative to the lower one during a �xed time

interval.

of the di�erential equations (analogous to Eqs. 6 and 7) lies on the ordinate at Y = 1

to facilitate comparison with Fig. 2. Figure 4 is similar in structure to Fig. 2, but the

more rapid radial decay of the vortex in this case (the tangential wind speed falls o� like

(radius)�7, compared with (radius)�1 for the line vortex in section 2) means that the

range of inuence of the two vortices is smaller and the relative trajectories outside the

critical curve are more zonal in Fig. 4 than in Fig. 2.

The region where closed loops occur has a leaf-like shape that is typical for a broad

range of parameters. The area of this region increases with the coupling parameter �.

A critical point (0; yc) exists if 2�v(0; yc) = U2 has a solution. If 2�vm � U2, i.e. if the

coupling is too weak or the shear is too strong, no region of closed loops occurs. The

width of the region of closed loops in the x-direction is found to be proportional to the

vortex strength and �=U2. The upper vortex passes the lower one faster south of the

critical line than to the north of it.

The behaviour of the two vortices is reminiscent of that in other calculations, such as

those in the studies referred to in section 1. For example, Jones (1995, p826) notes that

at the mid-level in her model, the speed of vortex motion is close to that of the speed of
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the environmental ow. This is equivalent to the �nding here if one identi�es the mean

position of the upper and lower vortex centres in the analogue model with the mid-level

centre in her model. She notes also that the vertical tilt of the vortex increases with time,

but is much smaller than that which would be implied by simple advection by the basic

ow. Again, the analogue model shows clearly why this is the case. Except when the

upper vortex is due east or due west of the lower one, one vortex is always opposing the

eastward motion of the other. In this way the zonal ow in one layer is shared between the

two vortices (see (5)) so that their relative eastward motion is less than if one vortex were

stationary and the other simply advected by the zonal ow �. Jones does not show a case

where mutual rotation occurs without continued separation, which the analogue theory

would predict for weak enough shear and/or a strong enough vortex and vertical coupling.

The existence of this regime may be signi�cant, however, and may explain why tropical

cyclones frequently exhibit small-scale track oscillations. Our calculations suggest that

such oscillations may be a result of the storm being subjected to weak vertical shear. The

question remains, of course, to what extent one can really neglect the ow asymmetries

that arise as a result of the deformation of each vortex by the ow �eld of the other, and

the e�ects of divergence? Recently, Jones (1999a) has investigated the evolution of these

asymmetries and has shown situations where they can have an important e�ect on the

vortex motion. We explore this problem here on the basis of quasi-geostrophic theory

and show cases where the asymmetries are much less important for the vortex motion

than the mutual rotation.

4. Quasi-geostrophic model

We examine now the degree to which the subsequent motion of a two-layer quasi-

geostrophic vortex can be characterized by the dynamics contained in the analogue model

of sections 2 and 3. In other words, to what extent can we interpret the motion of each

component vortex (one in each layer) in terms of advection by the vector sum of the

basic ow in its own layer and the ow associated with the axisymmetric circulation

induced by the other vortex at its centre? The point of considering quasi-geostrophic

vortices is because the two-layer quasi-geostrophic problem can be solved numerically

and the invertibility relationship between the PV and the streamfunction is linear. The

latter property enables us to uniquely identify the streamfunction contribution from each

component vortex and to assess the errors in neglecting the ow asymmetries arising from

the deformation of each vortex.

(a) Model formulation

For simplicity we assume that the two model layers have equal thickness D. Follow-

ing Pedlosky (1987), the ow evolution is governed by the quasi-geostrophic potential

vorticity equation in each layer:

@qn

@t
+ J ( n; qn) = 0; (n= 1; 2) (13)

where

qn =r
2
 n + (�1)n��2 ( 1 �  2) + �ny; (14)

� Jones' formulation considers easterly zonal shear with zero basic ow at the upper boundary and
westerly ow at the surface.
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 n is the geostrophic streamfunction in layer-n, qn is the pseudo-potential vorticity (PV)

in that layer, �=ND=f is the deformation radius, f is the Coriolis parameter and �n =

� + �n, where � = df/dy and �n is a constant to be de�ned below. We separate qn and

 n into a basic state contribution which depends only on y and is denoted by an overbar,

and a vortex part, denoted by a prime. Then

q
n
=
d
2
 
n

dy2
+ (�1)n��2

�
 1 �  2

�
+ �ny; (15)

q
0

n
=r

2
 
0

n
+ (�1)n��2 ( 01 �  

0

2) ; (16)

and q0
n
satis�es �

@

@t
+ un

@

@x

�
q
0

n
+ J ( 0

n
; q
n
) + J ( 0

n
; q

0

n
) = 0; (17)

where un =�

�
d 

n
=dy

�
. The basic state potential vorticity gradient in each layer is

obtained by di�erentiating Equation (15), i. e.,

@q
n

@y
= (�1)n��2 (U2 � U1) + �n: (18)

Note that J ( 0
n
; q

0

n
) = k � r 

0

n
^ rq

0

n
. Moreover, for a symmetric vortex, both r 

0

n

and rq
0

n
lie in the radial direction, whereupon J ( 0

n
; q

0

n
) = 0 . However, an initially-

symmetric vortex will remain symmetric only if J ( 0
n
; q
n
) = 0 and only if there is no

mean vertical shear (i.e. u1 = u2). The former condition is satis�ed only if the basic state

potential vorticity gradient is zero, which we assume to be the case. The requirements

are that � = 0 and �n = (�1)n��2(U1 � U2), i.e. the upper and lower boundaries of the

domain slope linearly in the y-direction, parallel to the internal uid interface, with

slope �ny�=N . The quasi-geostrophic equations are restricted by the requirement that

the Rossby-number Ro= U=(fL) is small compared with unity. In particular, the size of

Ro a�ects the interface displacement Ro��2 ( 2 �  1). If Ro is too large, negative layer

thicknesses may result in the model if the shear and/or coupling rates are large and if

the domain extends far in the y-direction.

One limitation of the analogue model is that it does not allow the interface between

the upper and lower vortices to deform. This restriction can be removed in the quasi-

geostrophic model.

We consider �rst an initially-symmetric cyclonic vortex centred at the point r2 in

which the PV-distribution is con�ned to the upper layer; i.e. let q2(r; t) =Q2 (jr� r2j)

and q1(r; t)� 0, where here, r= (x; y) and r2 = (x2; y2). The corresponding streamfunc-

tion in each layer can be obtained by solving the invertibility relation represented by Eq.

(16). When this is done, the relative vorticity in the lower layer is simply ��2 ( 02 �  
0

1).

Suppose now that the upper-level PV-distribution is advected zonally by the di�erential

shear illustrated in Fig. 1. As explained, for example, by Hoskins et al. (1985, section 4),

the associated low-level disturbance must translate with it. However, as there is no zonal

ow in the lower layer, this is possible only by the process of development as envisaged

by Sutcli�e (1947); i.e. in layer-1 there must be stretching of planetary vorticity through

ascent of the interface to the east of the upper-level PV-distribution and contraction of

planetary vorticity to the west. In other words, an azimuthal wavenumber-one pattern of

divergence is necessary for the translation of the associated (zero-PV) vortex in the lower

layer and this destroys the initial symmetry of the ow, leading to a wavenumber-one

pattern of relative-vorticity tendency. The e�ect is clearly not captured by the theory

developed in section 2 and, to the extent that it is important for the subsequent vortex
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motion, its omission places a limitation on that theory.

The possibility arises of re�ning the theory of sections 2 and 3, at least for the

quasi-geostrophic case, by considering the interaction of singular upper and lower PV-

anomalies in the two-layer ow. The structure of these is given by Gryanik (1983) and

Hogg and Stommel (1985). However, since such disturbances are associated with relative

vorticity distributions that are not con�ned to a point, it seems just as pro�table here to

examine the case of distributed vortices from the outset. Accordingly, we consider now

an initial vortex in the two-layer model to be made up of a pair of PV-distributions and

their associated ow �elds as described above, one in each layer. We refer to the two

component vortices as vortex-1 and vortex-2. Vortex-1 has a PV-distribution q1 con�ned

entirely to the lower layer and vortex-2 has a PV-distribution q2 con�ned entirely to

the upper layer. The ow associated with each PV-distribution has a relatively strong

contribution in its own layer and a weaker one in the other layer. The geostrophic stream-

function of the vortex in layer-1,  L, is the sum of the streamfunction contribution from

the PV-distribution in that layer,  L1, and from the streamfunction contribution from the

PV-distribution in layer-2,  L2. Likewise, the geostrophic streamfunction of the vortex

in layer-2,  U , is the sum of the streamfunction contribution from the PV-distribution

in that layer,  U2, and from the streamfunction contribution from the PV-distribution

in layer-1,  U1. At the initial time, the streamfunction pairs ( L1 ,  L2) and ( U1,  U2)

satisfy the steady axisymmetric quasi-geostrophic equations:

�
L� �

�2
�
�2

��
�2

L+ �
�2

��
 L2  U2

 L1  U1

�
=

�
0 q2

q1 0

�
(19)

where L� d
2
=dr

2 + r
�1
d=dr and r is the radius. The inverse of the constant � is a

measure of the strength of coupling between the two vortices, equivalent to the coupling

coeÆcient � in sections 2 and 3. Note that a potential vorticity anomaly with horizontal

scale L in a continuously strati�ed uid has a penetration depth scaleHR = fL=N , where

N is the Brunt-Vaisala frequency. In the two-layer uid considered here, the quantity

g��=(H�) plays the role of N , where �� is the density contrast between the layers.

Then the inuence of an anomaly in the upper layer on the ow in the lower layer

decreases as the scale of the anomaly decreases or as �� increases. At later times, when

the vortices have become non-axisymmetric, the PV-distribution in each layer is radially-

averaged about the vortex centre in that layer to obtain new symmetric distributions of

PV: say ~q1 and ~q2. The vortex centre in a layer is de�ned as the location of the maximum

PV in that layer. With these new pro�les of qn, the two columns of Eq. (19) are solved

separately for the symmetric streamfunctions for vortex-1 and vortex-2. We may then

calculate the ow speed and direction at the centre of each vortex associated with the

symmetric circulation of the other vortex. The extent to which this ow characterizes the

motion of the two vortices in a full numerical solution of the quasi-geostrophic problem

is a measure of the applicability of the analogue model in this case.

(b) Results

The full quasi-geostrophic model is initialized with a barotropic vortex having the

same pro�le of tangential wind speed as in section 3, but with rm = 500km and vm =

10ms�1. For a mid- latitude value of f (= 10�4
s
�1), the vortex Rossby number, Ro=

vm=(frm), has the value 0.24. The nondimensional Rossby radius of deformation, �=rm =

1:67. A zonal ow U2 = 2ms�1 is applied in the upper layer whereas there is no back-

ground ow in the lower layer. As a result, the vortex begins to tilt and the location of
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the upper and lower vortex centres separate. The tracks of the two component vortices

in this calculation are displayed in Fig. 5. As in the analogue model, the vortices loop

Figure 5. Trajectories of the upper and lower vortex centres for a pair of distributed vortices of equal
strength that are initially co-located. The track of the upper vortex is denoted by 'T' every 6 h (about 6.5
time units, rm=vm) and the lower vortex by 'B'. Nondimensional Rossby deformation radius �=rm = 1:67.

around a translating mean centre which moves at a speed of 1
2
U2.

a) b)

Figure 6. Radial pro�les of tangential wind speed for (a) vortex-1, and (b) vortex-2, at an early time
(0.4 time units, solid) and a later time (26 time units, dashed). Time unit is rm=vm.

Figure 6 shows the radial pro�les of tangential wind speed for vortex-1 at an early

time (solid) and a later time (dashed) in dimensionless time units rm=vm. The pro�les
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are obtained by solving the �rst column of Eq. (19) with the radially-averaged PV-

distribution on the right-hand-side. In this case the ratio of maximum tangential wind

speed in the lower layer to that in the upper layer is about 4:1. Note also that the pro�les

do not change appreciably with time. As expected, the pro�les for vortex-2 are identical,

but the layers are reversed.

Figure 7a compares the translation speed components, U and V, of the upper vortex

with the velocity components of the symmetric ow across its centre associated with the

lower vortex (the corresponding dashed curves) as a function of time. Similar compar-

isons are shown in Fig. 7b for the translation speed components of the lower vortex. The

relatively good agreement of the corresponding sets of curves indicates that the dynamics

represented by the analogue model of section 3 captures the essence of the ow evolution

in this case. However, it is not possible to provide a full comparison of the two theories

because, in the quasi-geostrophic case, the tangential velocity pro�le of the upper part

of each component vortex is not a constant multiple of the pro�le of the lower part. This

is exempli�ed by the singular vortex solutions given by Gryanik (1983) and Hogg and

Stommel (1985).

The two panels in Fig. 7 show also the velocity components at the centre of each

vortex when the ow components associated with the asymmetric PV-distribution in the

other layer are added to the corresponding U and V curves (the dotted curves). These

curves lie very close to those for the translation speed of each vortex, con�rming that

the symmetric and asymmetric components together account for all of the motion. Thus

the di�erence between the U or V curve and the corresponding component of translation

velocity is a measure for the asymmetric ow across the centre of the two vortices.

Figures 8-10 show diagrams similar to Figs. 5-7, but for a calculation in which the

Rossby deformation radius � is larger than rm. For this case the coupling between layers

is weaker or equivalently the penetration depth is smaller, and the vortices separate (Fig.

8). As in the previous case, the pro�les of mean tangential wind speed do not vary ap-

preciably with time, but in this case the ratio of maximum tangential wind speed in the

lower layer to that in the upper layer is about 9:1 (Fig. 9). In this case also, the relatively

good agreement of the corresponding sets of curves indicates that the dynamics repre-

sented by the analogue model of section 3 captures the essence of the ow evolution.

One cannot construct a phase-space diagram for the full geostrophic solutions, be-

cause the vortices become distorted and the subsequent ow evolution depends not only

on the positions of the vortices at the current time, but also on the history of the ow.

However, one can construct diagrams such as Fig. 11 which shows whether looping mo-

tion, possibly with alignment, or separation will occur as a function of the relative po-

sitions of the upper and lower vortices. Vortex alignment is the strati�ed counterpart of

vortex merger in a barotropic uid system and refers to a mean decrease in the horizontal

distance between the upper and lower vortex centres on a time scale long compared with

the period of looping motion about the mean centre (Polvani, 1991).

As in Figs. 2 and 4, the lower vortex is located at the origin. For initial positions

of the upper vortex denoted by a cyclone symbol, the vortices execute looping motions

and eventually align. For initial positions denoted by a downward-pointing arrow, the

upper vortex passes to the south of the lower vortex and then on to the east. For initial

positions marked by a star, the upper vortex moves with an eastward component away

from the lower vortex. The critical curve which divides looping motions and alignment

from separation is again leaf-shaped, but the axis is inclined towards the northwest. A

detailed analysis of the alignment process is beyond the scope of the current work, but

it is worth noting that the approach of the two vortex centres is not monotonic during

the merger.
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a)

b)

Figure 7. Comparison between the translation speed components, U and V, of (a) the upper vortex,
and (b) the lower vortex, and the velocity components of the symmetric ow of the other vortex across
its centre (the corresponding dashed curves) as a function of nondimensional time (time unit rm=vm).
The dotted curves in each panel show the velocity components at the centre of each vortex when the ow
components in its layer associated with the asymmetric PV-distribution of the other vortex are added

to the corresponding dashed curves.

5. Discussion

It is of interest to contrast the present study with that of vortex alignment in a two-

layer quasi-geostrophic model by Polvani (1991) and with the study of singular two-layer

quasi-geostrophic vortices on a beta-plane by Reznik et al. (1997). Polvani investigates

the interaction of initially-circular vortex patches (vortices consisting of �nite regions
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Figure 8. Legend as for Fig. 5, except for �=rm = 2:68, Symbols all 5.18 time units.

of uniform potential vorticity), one in each layer, but does not consider the e�ects of

vertical shear. He shows that alignment depends on the initial vortex separation and

Rossby radius of deformation compared to the vortex size. Our analogue model would

always predict the mutual rotation of the two vortices in the absence of vertical shear,

since the critical point (0; yc) tends to in�nity as U2 tends to zero.

Reznik et al. (1997) present an analytic theory of purely baroclinic two-layer singular

vortices on a beta-plane and identi�ed four mechanisms governing the vortex motion.

These are (i) barotropic beta-gyres, (ii) baroclinic beta gyres, (iii) the interaction between

the lower-layer and upper-layer vortices, and (iv) Rossby-wave radiation. Like Polvani

op. cit. they do not consider vertical shear, but calculations by other authors indicate the

importance of the beta-gyre asymmetries in addition to those induced by vertical shear

(see e.g. Shapiro, 1992; Flatau et al., 1994; and Wang and Holland, 1996).

The situation in tropical cyclones is likely to be much more complicated than in

the calculations described in this paper and those referred to above. For one thing, the

quasi-geostrophic assumption is invalid, at least on the scale of the vortex core, and there

are typically two independent scales characterizing the vortex: the radius of maximum

tangential wind speed and the radius of gale-force winds. The latter characterizes the

rate of radial decay of the tangential wind �eld. The additional scale may produce a even

richer range of behaviour than that in the quasi-geostrophic calculations of Polvani op.

cit..

A further complication, discussed by Jones (1995), is that at Rossby numbers that are

not small compared with unity, the Rossby radius of deformation is a function of radius,

inversely proportional to the inertial stability. This means that the penetration depth



16 R. K. SMITH, W. ULRICH and G. SNEDDON

a) b)

Figure 9. Legend as for Fig. 6, except after 17.8 time units and for �=rm = 2:68.

varies with radius also. Some as yet unpublished comparisons we have made between the

predictions of quasi-geostrophic theory and those using the primitive equations show that

the former theory underestimates the penetration depth for strong vortices with Rossby

numbers comparable with or greater than unity. In other words, the strong vortices are

more able to resist the e�ect of vertical shear.

Finally, it is likely that vertical coupling by convective momentum transport plays

an important role also in the behaviour of vertically-sheared storms (see e.g Shapiro,

1992; Dengler and Reeder, 1996). Despite these additional complications, the mechanisms

represented in the analogue model go a long way to understanding the range of behaviour

in the calculations by Jones and others and it is reasonable to presume that they are

fundamental in tropical cyclones also.

6. Conclusions

We have presented solutions for a simple two-layer analogue model in order to elu-

cidate some aspects of the dynamics of vortex motion in vertical shear. The model is

based on the idea that the motion of the vortex in each layer can be approximated by

the symmetric ow of the other vortex at its centre, together with any basic ow in that

layer. We show that the assumption provides a good �rst approximation for interpreting

the motion of quasi-geostrophic vortices in vertical shear. The calculations indicate two

types of ow behaviour according to the strength of the two component vortices, the

degree of vertical coupling and the strength of the shear. If the component vortices are

strong, the vertical coupling is strong and the shear is weak, the vortices rotate around

each other as their mean centre translates with a fraction of the zonal ow speed. The

fraction is the ratio of the circulation strength of the upper vortex to the sum of the

circulation strengths of both vortices. If the component vortices are weak, the vertical

coupling is weak and the shear is strong, the vortices become progressively separated by
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a)

b)

Figure 10. Legend as for Fig. 7, except for �=rm = 2:68.

the shear while undergoing a partial rotation about each other while they are still close.

We suggest that the processes isolated in the analogue model are likely to be of

fundamental importance in understanding the behaviour of tropical cyclones in vertical

shear. Indeed the prediction that strong vortices exposed to weak vertical shear undergo

mutual rotation as they propagate provides a possible explanation for the small-scale

track oscillations of tropical cyclones that are frequently observed.

Acknowledgements



18 R. K. SMITH, W. ULRICH and G. SNEDDON

Figure 11. Track regimes for the upper vortex as a function its initial location relative to the lower
one. At points marked by a cyclone symbol, the upper vortex loops around the lower one and in some
cases converges towards it (i.e. the vortices align). The solid contour encloses the region where looping
or converging motion occurs. At points marked by a downward-pointing arrow, the upper vortex �rst
moves towards and cyclonically around the lower vortex and then continues on to the right. At points

marked by a star, the upper vortex separates from the lower vortex, moving to the right.
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