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Limitations of a linear model for the hurricane boundary
layer
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ABSTRACT: The linear model for the steady boundary layer of a rapidly rotating axisymmetric vortex is derived from a
detailed scale analysis of the full equations of motion. The previously known analytic solution is re-appraised for vortices
of hurricane scale and strength. The internal consistency of the linear approximation is investigated for such a vortex
by calculating from the solution the magnitude of the nonlinear terms that are neglected in the approximation compared
with the terms retained. It is shown that the nonlinear terms are not negligibly small in a large region of the vortex, a
feature that is consistent with the scale analysis. We argue that the boundary-layer problem is well-posed only at outer
radii where there is subsidence into the layer. At inner radii, where there is ascent, only the radial pressure gradient may be
prescribed and not the wind components at the top of the boundary layer, but the linear problem cannot be solved in these
circumstances. We examine the radius at which the vertical flow at the top of the boundary layer changes sign for different
tangential wind profiles relevant to hurricanes and show that this is several hundred kilometres from the vortex centre.
This feature represents a further limitation of the linear model applied to hurricanes. While the present analysis assumes
axial symmetry, the same limitations presumably apply to non-axisymmetric extensions to the linear model. Copyright c©
2009 Royal Meteorological Society
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1. Introduction

The boundary layer of a mature hurricane is an important
feature of the storm, as it strongly constrains the radial
distribution of vertical motion at its top, as well as the dis-
tributions of absolute angular momentum and moisture. In
fact, there is mounting evidence that the boundary layer
plays a central role in the hurricane intensification pro-
cess itself (e.g. Emanuel, 1997; Smith et al., 2008, 2009).
Over the years the boundary layer has been the subject of
numerous theoretical investigations, many of them relat-
ing to axisymmetric vortices (Rosenthal, 1962; Miller,
1965; Smith, 1968; Leslie and Smith, 1970; Carrier,
1971; Eliassen, 1971; Bode and Smith, 1975; Eliassen
and Lystadt, 1977; Montgomery et al., 2001; Smith, 2003;
Smith and Montgomery, 2008; Smith and Vogl, 2008) and
a few also to asymmetric vortices (Shapiro, 1983; Kepert,
2001; Kepert and Wang, 2001). These studies can be
divided into three types: vertically integrated models that
assume certain profiles of the radial and tangential wind
components, but not their scales (Smith, 1968; Leslie
and Smith, 1970; Bode and Smith, 1975); slab models,
which are a subset of the former that assume uniform
profiles (Shapiro, 1983; Smith, 2003; Smith and Vogl,
2008; Smith and Montgomery, 2008); and what we will
term ‘continuous models’, in which the vertical structure
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is determined as well as the radial structure (Eliassen,
1971; Eliassen and Lystadt, 1977; Montgomery et al.,
2001; Kepert, 2001; Kepert and Wang, 2001). With the
exception of Smith (2003) and Smith and Vogl (2008),
all of the aforementioned studies have focused on the
dynamical aspects of the boundary layer: thermodynamic
aspects were not considered.

In one of the early studies, Eliassen (1971) developed
a linear theory for the spin-down of a vortex as a
result of surface friction and showed that, if a no-slip
condition is applied at the surface, the temporal decay
of the tangential winds above the boundary layer is
exponential. He showed also that the vertical velocity
at the top of the boundary layer is upwards and nearly
constant inside the radius of maximum tangential winds,
with a maximum at the vortex centre. However, in the
case of a turbulent boundary layer, the vortex decays
algebraically with time. Moreover, the vertical velocity
at the top of the boundary layer is zero at the vortex
centre and increases linearly with radius inside the radius
of maximum tangential winds.

Eliassen and Lystadt (1977) extended this work to
account for differential rotation in the tangential flow and
presented numerical solutions of the coupled equations
for the boundary layer and the vortex above for the case
with a quadratic drag law in the surface layer. Their spin-
down theory predicts the evolution of the angular veloc-
ity, the transverse streamfunction and the boundary-layer
depth, as well as the half-life time of the vortex (the time
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required to reduce the angular velocity by one half). The
theory is formulated in an inertial (non-rotating) coor-
dinate system and assumes that the flow evolves close
to a state of cyclostrophic balance throughout the fluid.
However, the strongest vortex examined had a maximum
speed of only 10 m s−1, corresponding to a Rossby num-
ber of 20 at the latitude considered. Montgomery et al.
(2001) pointed out that the neglected non-cyclostrophic
terms in the boundary layer may become significant at
higher swirl speeds, which might limit the applicabil-
ity of the theory to hurricanes. To investigate this issue
they performed numerical calculations of the full nonlin-
ear equations in the same spin-down flow configuration
as Eliassen and Lystadt, and obtained solutions for vor-
tices of different intensities including hurricane-strength
vortices (i.e. with maximum tangential winds exceeding
33 m s−1). They found that the theoretically predicted
algebraic temporal decay of the primary vortex is vali-
dated also for tropical storm and hurricane-strength vor-
tices, but noted increasing quantitative departures from
Eliassen and Lystadt’s theory with increasing fluid depth,
although it is still qualitatively valid for hurricane-like
vortices 10 and 15 km deep. They found also that, as
the vortex strength increases from tropical storm to hur-
ricane strength, the cyclostrophic balance approximation
becomes only marginally valid in the boundary layer yet
remains valid in the flow interior. In addition, a tempo-
rary spin-up of tangential winds and vertical vorticity in
the boundary layer and a low-level outflow jet occurred
in the numerical simulations, features that are not pre-
dicted by the theory. These features were argued to be
the primary cause for the discrepancy between the theory
and the model simulations.

Kepert (2001) examined the linear equations for the
steady boundary layer of an asymmetric vortex and
obtained an analytic solution to these. The theory reduces
to that derived by Eliassen and Lystadt (1977) in the
axisymmetric case. The solution was shown to exhibit a
region of supergradient winds near the top of the layer just
like the Ekman solution and, as in the Ekman solution, the
degree to which the flow is supergradient was only a few
percent. In a companion paper, Kepert and Wang (2001)
compared their linear solution with a steady-state solution
for the boundary layer obtained from a numerical model,
which included a relatively sophisticated parameterization
of the boundary layer. They showed, inter alia, that
vertical advection of angular momentum plays a crucial
role in strengthening the supergradient component, which
may be several times stronger than predicted by the linear
model.

Recently, Smith and Montgomery (2008) examined
various approximations to the full nonlinear equations
for a slab boundary layer in the axisymmetric case
and showed that the linear theory was rather poor in
capturing the radial structure of the boundary layer when
compared with numerical solutions of the corresponding
nonlinear equations. In the slab case, the boundary layer
in the linear approximation cannot be supergradient.
These authors showed that the assumption of gradient
wind balance in the boundary layer was poor also. In

particular, the radius at which the vertical flow at the
top of the boundary layer changes sign from subsidence
at outer radii to upflow at inner radii is much larger in
the linear and balanced solutions than in the nonlinear
control solution. The poorness of the linear and balanced
solutions is consistent with a detailed scale analysis for a
slab boundary-layer model.

The slab model has one particular deficiency in that
it does not provide a means to determine the radial
variation of the boundary-layer depth, and it is necessary
to appeal to the scaling analysis of the continuous model
to incorporate this variation in the model. However it
does have the advantage that it is not necessary that the
flow leaving the boundary layer be constrained to be in
gradient wind balance with that above the boundary layer
(Smith and Vogl, 2008). Neither Eliassen and Lystadt
(1977) nor Kepert (2001) carried out a detailed scale
analysis to underpin the linear approximation and the
results of Montgomery et al. (2001) and Smith and
Montgomery (2008) cast serious doubts on its accuracy
when applied to hurricanes, especially in the inner
core region. Even so, it remains of intrinsic scientific
interest because it is an extension of the classical Ekman
boundary-layer theory and because it may be solved
analytically.

In this article we show how the linear approximation
may be derived from a detailed scale analysis of the
Navier–Stokes equations, assuming that turbulent stresses
can be represented by an eddy diffusivity formulation. We
examine also the self-consistency of the approximation
by computing the nonlinear terms that are neglected in
the derivation of the theory from solutions obtained from
the theory. Finally we examine the extent to which the
accuracy of the linear approximation depends on the
profile of the imposed tangential wind field at the top
of the boundary layer.

The paper is organized as follows. In section 2 we
review the full set of equations and carry out a detailed
scale analysis of them. On the basis of this analysis
we derive the full u- and v-momentum equations in the
boundary layer and the linear approximation thereto. We
give also the analytic solution to the linear problem. In
section 3 we show plots of solutions of the linear equa-
tions and examine the consistency of the approximation
by comparing the magnitude of the neglected nonlinear
terms with that of the linear terms retained. Section 4
discusses a range of issues concerning the linear theory
and our conclusions are presented in section 5.

2. Boundary-layer equations

The boundary layer of a hurricane is relatively shal-
low, typically less than 1 km deep, so that the varia-
tion of density with height can be neglected to a good
approximation. Assuming for the present that the turbu-
lent momentum transfer may be represented in terms of
a constant eddy diffusivity, K , the Navier–Stokes equa-
tions for an axisymmetric vortex may be expressed in
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cylindrical polar coordinates (r, λ, z) as
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where (u, v, w) is the velocity vector, p is the perturba-
tion pressure, and ρ is the density. The equations are
supplemented by the continuity equation, which for a
homogeneous fluid is
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In the derivation of equations for the boundary layer it
is normally assumed that the tangential wind component,
vg, at the top of the boundary layer is a function only of
radius and possibly time and that it is in gradient wind
balance, i.e. it satisfies the equation
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We will show below that the radial pressure gradient
throughout the boundary layer is, to a close approxima-
tion, equal to that at the top of the layer. This result allows
us to substitute for the pressure gradient in terms of vg
using (5). Then, setting v = vg(r, t) + v′, Equations (1)
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where

ξg = 2vg

r
+ f and ζag = dvg

dr
+ vg

r
+ f (8)

are the absolute angular velocity and vertical component
of absolute vorticity of the gradient wind, respectively.

It is instructive at the outset to carry out a detailed
scale analysis of these equations.

2.1. Scale analysis

Let U , V , V ′, W be scales for u, v, v′, w, and R, Z

be length-scales for r and z, respectively. Let T = R/U

be an advective time-scale for the radial flow and �p a
scale for changes in the perturbation pressure, p.

We examine first the continuity equation (Equation
(4)). The two terms of on the left-hand side have scales

U

R
,

W

Z
,

and since these sum to zero they must have the same
magnitude, i.e. W/Z ∼ U/R. This result is used to
simplify the scale analysis of the momentum equations
shown in Tables I and II. The ratios in the first lines
under each equation in these tables show the scale of the
equation term above it, while the second lines show the
corresponding non-dimensional scale. The latter scales
are obtained by dividing line (3a) in Table I by V 2/Z

to obtain (3b), dividing line (6a) in Table II by V ′� to
obtain (6b), and dividing line (7a) in Table II by U� to
obtain (7b). Here � is taken as a scale for ξg and � as
a scale for for ζag. It is seen that the analysis introduces
six nondimensional parameters:

• Ro� = V/(R�), a local Rossby number in the tan-
gential momentum equation based on the gradient
wind (scale V ) and the local absolute vorticity of
the gradient wind above the boundary layer (�);

• Ro� = V/(R�), a local Rossby number in the
radial momentum equation based on twice the
absolute rotation rate of the gradient wind, �,
instead of �;

• Su = U/V , the ratio of the radial to tangential wind
speed;

• Sv′ = V ′/V , the ratio of the departure of the
tangential wind speed from the gradient wind to
the gradient wind itself;

• Re = V Z/K , a Reynolds number, which character-
izes the importance of the inertial to the friction
terms;

• A = Z/R, an aspect ratio, which measures the ratio
of the boundary-layer depth to the radial scale.

As we assume the motion to be axisymmetric, a
separate advective time-scale for the tangential flow,
V/R, is not required.

We consider first the vertical momentum equation.
Typically, the boundary layer is thin, somewhere between
500 m to 1 km in depth, whereupon the aspect ratio A =
Z/R is small compared with unity. Moreover, typical
values of K are on the order of 10 m s−2, at least
outside the strong wind region of the vortex core. Taking
V = 50 m s−1 and R = 50 km, characteristic of the
inner core region, and Z = 500 m gives Re = 2.5 × 103

and A = 10−2. It follows from line (7b) in Table I that
�p/(ρV 2) ≈ max(S2

uA
2, SuAR−1

e ) = 1.0 × 10−4, even
assuming that Su ≈ 1 in the boundary layer. Thus the
vertical variation of p across the boundary layer is only
a tiny fraction of the radial variation of p above the
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Table I. Scaling of the terms in Equation (3). Here ∇2
h = (∂/∂r)(r∂/∂r), A = Z/R, Su = U/V and Re = V Z/K .
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Table II. Scaling of the terms in Equations (6) and (7). Here ∇2
h = (∂/∂r)(r∂/∂r), A = Z/R, Su = U/V , Sv′ = V ′/V , Ro� =

V/(R�), Ro� = V/(R�) and Re = V Z/K . Note that v is not replaced by v′ in the penultimate term in (7b) because vg depends
on r .
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boundary layer. In other words, to a close approximation,
the radial pressure gradient within the boundary layer
is the same as that at the top of the boundary layer.
This result enables the pressure gradient in the boundary
layer to be replaced by the gradient wind at the top
of the layer, as was done in deriving Equations (6)
and (7).

We examine now the terms in the radial and tangential
components of the momentum equation. First we note
that the radial diffusion term is O(A2) times that of the
vertical diffusion term in (6a) and O(A2S−1

v′ ) that of the
vertical diffusion term in (7a). Thus even if Sv′ is as small
as O(10−3), both terms representing radial diffusion can
be neglected.

From Table II, we see that a vertical scale Z that makes
the largest friction terms as important as the linear terms
in (6a) and (7a) is such that �V ′

≈ KU/Z2 and �U ≈

KV ′/Z2, from which it follows that Z = (K/I ∗)1/2,
where I ∗2 = �� is a scale for the inertial stability
parameter defined by I 2 = ξgζag. If Ro = V/(Rf ) �

1, ξg and ζag are both approximately equal to f and
the vertical scale reduces to (K/f )1/2, which is the
appropriate scaling for the classical Ekman layer.

2.2. The full boundary-layer equations

From the scale analysis in Tables I and II, the full radial
and tangential momentum equations in the boundary layer
are
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These are supplemented by the continuity equation (4).
Further approximations are not possible without knowl-

edge of the radial variation of Ro� and Ro� as well as
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Figure 1. (a) Three tangential wind profiles as a function of radius. The
thin horizontal line shows the threshold of gale-force winds. (b) Corre-
sponding profiles of relative vorticity. (c) Radial variation of the Rossby
numbers, Ro� (upper three curves) and Ro� (lower three curves), for
these profiles. The maximum of Ro� for profile 1 is 4.5. Numbers on the
curves in (b) and (c) refer to the corresponding profile in (a). This figure
is available in colour online at www.interscience.wiley.com/journal/qj

estimates for Su and Sv′ . Figure 1(a) shows a set of tan-
gential wind profiles with the same tangential wind speed

maximum of 40 m s−1 at the same radius of 40 km, but
with varying widths as characterized by the radius of gale
force winds, i.e. wind speeds above 17 m s−1. These pro-
files are detailed in Appendix A. The corresponding radial
profiles of the relative vorticity are shown in Figure 1(b)
and those of Ro� and Ro� are shown in Figure 1(c)
for the latitude where f = 5 × 10−1. It is clear from the
expression for Ro� that it cannot exceed a magnitude of
0.5 and that it must decrease with radius. On the other
hand, Ro� does not have an obvious upper bound and
can be quite large if the absolute vorticity at a particu-
lar latitude becomes sufficiently small. At least for the
profiles shown and for the above value of f , it does not
exceed 5.

2.3. The weak friction approximation

We may now envisage a (theoretical) situation where fric-
tional effects are weak in the sense that both Su and Sv′
are small compared with unity. Smith and Montgomery
(2008) refer to this as the weak friction approximation.
In this situation, the nonlinear terms on the left-hand
side of Equations (9) and (10) may be neglected pro-
vided that Ro� does not appreciably exceed unity (see
Table II). In the formal limit where Su � 1, Sv′ � 1 and
Ro� = O(1), these two equations reduce to the linear
system:

−ξgv
′ = K

∂2u

∂z2
, (11)

ζagu = K
∂2v′

∂z2
. (12)

It is of theoretical interest to examine the linear approx-
imation because Equations (11) and (12) are rela-
tively easy to solve analytically (see subsection 2.4 and
Appendix B) and because they provide a generaliza-
tion of the classical Ekman layer theory, the case where
Ro � 1. The corresponding depth-averaged values for
u and v in a slab boundary-layer model (Smith, 2003;
Smith and Vogl, 2008) indicate that U ≈ V ′ ≈ 0.2V –
0.3V , in which case Su and Sv′ are not very small com-
pared with unity. Thus, in practice, the solution to the
linear equations may not be very accurate. This finding
is consistent with that of Smith and Montgomery (2008),
who showed that in the case of the slab boundary-layer
model the predictions of the linearized equations are poor
in relation to solutions of the corresponding nonlinear
system.

Unfortunately, the full nonlinear boundary-layer equa-
tions (4), (9) and (10) are hard to solve in the steady
case because they are parabolic and, unlike the slab case,
the radial wind has a different sign at different heights.
Nevertheless one can examine the consistency of the lin-
ear approximation by estimating the magnitude of the
nonlinear terms from the linear solution and comparing
these with the corresponding linear terms. As far as we
are aware, this has not been done to date and it is the
topic of subsection 3.4.
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2.4. Solution of the linear problem

We show in Appendix B that the solution of Equations
(11) and (12) has the form

u(z) = − 2K

ζaδ2
e(−z/δ){A2 cos(z/δ) − A1 sin(z/δ)} (13)

and

v′(z) = e(−z/δ){A1 cos(z/δ) + A2 sin(z/δ)}, (14)

where δ = √
2K/I is a slightly refined scale for the

boundary-layer depth, I is the inertial stability parameter,
which we defined in the previous subsection in terms of
the gradient wind profile, K is an eddy diffusivity, which
we assume to be constant with radius and height, and A1
and A2 are functions of radius only. These constants are
detailed in Appendix B.

3. Some results and an appraisal of the linear theory

In this section we examine aspects of the foregoing
analytic solution for one or all of the three gradient wind
profiles shown in Figure 1.

3.1. Boundary-layer depth

Figure 2 compares the radial variation of the boundary-
layer depth scale, δ(r), for the three wind profiles and for
the parameter values K = 10 m2 s−1, f = 5 × 10−5 s−1

and a constant drag coefficient CD = 2.0 × 10−3. The
depths are very similar at large radii and also inside a
radius of about 100 km, but they deviate appreciably
from one another at intermediate radii, because of the
differences in the inertial parameter, which is smaller for
narrower vortices on account of the more negative relative
vorticity. While the depth for wind profiles 2 and 3
steadily decreases with decreasing radius, that for vortex

Figure 2. Boundary-layer depth scale δ for the three vortex profiles
shown in Figure 1. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

1 first increases, before decreasing as the radius decreases
further. The initial increase is associated with the fact
that the relative vorticity and hence the absolute vorticity
and inertial stability for this profile have a minimum at a
radius of about 300 km, which implies a local maximum
in the boundary-layer depth near this radius. While this
maximum is a natural consequence of the scaling, it is
not known how realistic it is because of the lack of
observational data on the depth of the inflow layer at
these radii in a tropical cyclone.

3.2. Vertical velocity above the boundary layer

Figure 3 shows the vertical velocity w(r) evaluated at a
height of z = 2 km. This quantity can be calculated from
the continuity equation, either analytically (see Appendix
B) or simply by using finite differences applied to the
radial volume flux at radial intervals. The latter method
is easier, but we used both methods and verified that they
gave the same results. For vortices 2 and 3 the vertical
velocity is at a maximum close to, but just outside, the
radius of maximum tangential wind speed (at 49 km for
vortex 2 and 42 km for vortex 3) with values of 9 cm s−1.
Vortex 1 shows also a local maximum of 8.7 cm s−1 at
39 km, but the strongest vertical winds are obtained far
out from the core region. The profile for w corresponding
to vortex 1, the one with a pronounced peak in δ, has a
global maximum of 16 cm s−1, twice as large as for
the other profiles. However, this maximum occurs at
a radius of about 240 km. Significantly, the radius at
which the vertical flow changes sign depends markedly
on δ, being 280 km for vortex 1, 340 km for vortex
2 and 410 km for vortex 3. The foregoing profiles are
similar to those in the slab model for the same tangential
wind profile shown in Figures 2(c) and 3(d) of Smith
and Montgomery (2008). However the magnitude of the
vertical velocity is different because the boundary-layer
depth taken for the slab model is not directly equivalent
to the one that emerges here. In particular the calculation

Figure 3. Vertical velocity w(r) for the vortex profiles shown in
Figure 1 at z = 2 km. This figure is available in colour online at

www.interscience.wiley.com/journal/qj
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shown in Figure 2(c) of Smith and Montgomery (2008)
assumes a depth that does not vary with radius.

3.3. Boundary-layer structure of vortex 2

We examine now the structure of the boundary layer for
vortex 2 in Figure 1 for the values for f , K and CD
defined in subsection 3.1.

Figure 4 shows contour plots of the radial wind speed
u(r, z), the tangential wind speed v(r, z), the deviation
of the tangential wind from the gradient wind, v′(r, z) =
v(r, z) − vg(r), and the vertical velocity w(r, z) at heights
below 2 km, which encompass the boundary layer. The
maximum inflow of 13.2 m s−1 occurs at a radius of
70 km, about twice the value of rm, and at a height of
about 50 m. The top of the inflow region (u(r, z) ≤ 0)
decreases progressively from about 1.7 km (about 3 scale
heights) at a radius of 600 km to less than 150 m inside
the radius of maximum tangential wind speed. Above
that layer there is weak outflow with maximum wind
component (u(r, z) > 0.5 m s−1) at radii between 40 km
and 100 km and in a height range between 450–850 m.

The tangential winds are slightly larger than the gra-
dient wind in parts of the boundary layer (Figure 4(b)),
i.e. they are supergradient. The region of supergradient
winds is highlighted in Figure 4(c) by the region where
v′(r, z) ≥ 0: this region is seen to extend far out, but the

degree by which the winds are supergradient is a max-
imum in the inner core region (r < 100 km) and even
there only by a few percent (note that the contour spacing
in Figure 4(c) is lower for positive values than for nega-
tive values, where the flow is subgradient). The maximum
supergradient wind has a value of 1.7 m s−1 and occurs at
a radius of 55 km at a height of 271 m. The depth of the
region of supergradient winds decreases from a height
range between about 800–2000 m at radii larger than
400 km to a much shallower height range at smaller radii.

Above the region of supergradient winds the flow
becomes slightly subgradient again. This area of subgra-
dient flow coincides approximately with the region of
weak outflow (u(r, z) > 0) that exists above the inflow
layer. Kepert (2001) correctly attributed the occurrence
of supergradient winds to the radial transport of absolute
angular momentum surfaces by the frictionally induced
inflow. Were it not for friction, one would expect the
level of maximum supergradient winds to be close to the
level at which the radial wind is maximum, assuming
that absolute angular momentum surfaces are close to
vertical. As seen in Figure 4(a), the maximum radial wind
is close to the surface where friction produces the largest
deviation of the tangential wind from the gradient wind
(Figure 4(c)), and hence the largest net radial force. Since
the supergradient winds occur at levels distinct from the
maximum inflow it is clear that the vertical diffusion
of momentum is required to explain the structure of the

Figure 4. Isopleths of (a) radial and (b) tangential wind components up to a height of 2000 m for vortex profile 2. Contour interval 1 m s−1

for negative values of u, 0.2 m s−1 for positive values and 5 m s−1 for v (selected contour values marked). Dashed curves indicate negative
values and solid curves non-negative values. Panel (c) shows the deviation of tangential wind from the gradient wind. Contour interval 2 m s−1

for positive values (i.e. supergradient winds) and 0.5 m s−1 for negative values (i.e. subgradient winds). Panel (d) shows isopleths of vertical
velocity. Contour interval 2 cm s−1. The thin solid curves are the zero contour. The additional thin solid curves in panel (d) have half the
contour spacing of the thick lines to highlight the local maximum between 200 and 250 km radius. This figure is available in colour online at

www.interscience.wiley.com/journal/qj
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linear boundary layer. For one thing, the absolute angu-
lar momentum surfaces are not nearly vertical near the
surface and, for another, the absolute angular momentum
is not conserved by radial motion in the boundary layer!

Of course, the linear equations for the boundary layer,
(11) and (12), express a force balance between the gen-
eralized Coriolis force, (ξgv

′, −ζagu), and the vertical
diffusion of horizontal momentum, K(∂2/∂z2)(u, v). At
the level of supergradient winds (v′ > 0), the general-
ized Coriolis force in the radial momentum equation is
radially outwards, i.e. ξgv

′ > 0. In the linear boundary
layer, this force is balanced by the upward diffusion
of negative radial momentum, i.e. ∂τx/∂z < 0, where
τx = K(∂u/∂z) is the radial stress at height z. A sim-
ilar force balance exists in the tangential wind direction.
In the nonlinear problem, vertical advection will act also
to transfer horizontal momentum vertically and Kepert
(2001) argues that this is the primary reason for the depar-
ture of the linear solution from the nonlinear solution. The
calculations described in subsection 3.4 show that radial
advection is just as important.

Figure 4(d) shows that there is subsidence into the
boundary layer beyond a radius of about 330 km and
ascent out of it inside this radius. Furthermore, the radius
at which w(r, z) = 0 is almost independent of height. The
vertical velocity has a local maximum at about 50 km
radius, in this case just outside the radius of maximum
tangential wind speed of the gradient wind and at a level
near the top of the inflow layer. The large radial range
of ascent represents a limitation of the linear solution
vis-á-vis hurricanes as discussed in section 4.

The question arises now: how accurate is the foregoing
solution, especially at inner radii where there is strong
radial advection? We examine this question below.

3.4. Accuracy of the linear solution

Based on the full solution for u(r, z), v(r, z) and w(r, z),
it is possible to assess the accuracy of the linear approx-
imation. Equations (9) and (10) were simplified by omit-
ting the terms

tn1 = u
∂u

∂r
+ w

∂u

∂z
− v′2

r
(15)

and

tn2 = u
∂v′

∂r
+ w

∂v′

∂z
+ uv′

r
, (16)

respectively. If we consider u(r, z), v′(r, z) and w(r, z)

as approximate solutions of Equations (9) and (10), the
terms tn1 and tn2 can be interpreted as deviation from the
exact solution and should be small compared with unity.
These expressions can be estimated using the solution
of the linearized system. In Figure 5 we compare the
magnitude of the terms tn1 and tn2 with those terms
retained:

tr1 = −ξgv
′(r, z) (17)

and

tr2 = ζagu(r, z) (18)

Figure 5. Isopleths of the linear and nonlinear acceleration terms in the radial (upper panels) and tangential (lower panels) momentum equations:
(a) tr1 (contour interval 2.5 × 10−3 m s−2 for positive values (solid/red lines) and 1.0 × 10−3 m s−1 for negative values (dashed/blue lines)); (b)
tn1 (contour interval 1.0 × 10−3 m s−2 for positive values, negative values are less than 2.5 × 10−3 m s−1); (c) tr2 (contour interval 2.0 × 10−3

m s−2 for positive values and 2.0 × 10−4 m s−1 for negative values); (d) tn2 (contour intervals as in (c)). The thin solid curves are the zero
contour. This figure is available in colour online at www.interscience.wiley.com/journal/qj
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respectively. As expected the largest absolute values of
tr1 and tr2 occur in a region close to the surface and at
inner radii where the radial and vertical gradients of u

and v′ are large (Figure 5(a) and (c)). The corresponding
isopleths of the neglected terms, tn1 and tn2, are shown
in Figure 5(b) and 5(d), respectively. It is clear that the
neglected terms are comparable in magnitude with those
retained over much of the region of interest. (The fact that
the zero contours of tn1 and tn2 do not coincide with those
of tr1 and tr2 makes the comparison in terms of ratios of
the neglected to retained terms difficult to interpret.)

The foregoing result is consistent with the scale analy-
sis in section 2.1. From Table II, the relative importance
of the neglected terms is characterized by the values of
Ro� and Ro�, which depend on the chosen profile for
vg, together with estimates for Su and Sv′ . In the weak
friction approximation both Su and Sv′ are assumed to be
small compared with unity. Figure 6 shows the parame-
ters Su = |u/vg| and Sv′ = |v′/vg| evaluated at the heights
at which the radial wind speed and the tangential wind
deficit attain their maximum absolute values for the three
vortex profiles shown in Figure 1.

The values obtained for Su and Sv′ are both largest
for vortex 1, with Sv′ reaching a maximum value of 0.3
and Su reaching a maximum of 0.83, both at a radius of
about 285 km. For vortex 2 and vortex 3, the maxima
of Su and Sv′ are somewhat smaller and occur at larger
radii. In general, the values for Su are not very small
compared with unity and the highest values do not just
occur in the core region, but cover much of the radial
range shown. This result underpins the findings of the
direct comparison of neglected and retained terms shown
in Figure 5. Thus the assumptions of the weak friction
approximation that Su � 1 and Sv′ � 1 are not valid for
all profiles at all radii. The scale analysis in Table II shows
that the nonlinear terms can be neglected if the scales

Figure 6. Ratio of the radial to tangential wind speed Su = |u/vg|
(lower three curves) and ratio of the wind deficit to the gradient
wind Sv′ = |v′/vg| (upper three curves) evaluated at the height where
u and v′ reach their maximum absolute values for the three vortex
profiles shown in Figure 1. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

Figure 7. Radial profiles of the scales S2
uS−1

v′ Ro� (curve a), Sv′ Ro�

(curve b) and Sv′ Ro� (curve c) for vortex 2. This figure is available
in colour online at www.interscience.wiley.com/journal/qj

S2
uS

−1
v′ Ro�, Sv′Ro� and Sv′Ro� are small compared with

unity. For vortex 2, this is not the case at most radii, as
shown in Figure 7, corroborating the conclusions arrived
at above that the linear boundary-layer approximation is
inaccurate and does not extend the validity of the classical
Ekman layer anywhere near the inner core region of a
hurricane.

Kepert (2001, p 2477) stated that ‘. . . a limitation
of the linear model is the neglect of vertical advection,
which is not supported by a scale analysis’. However,
the scale analysis presented in Table II suggests that the
neglect of radial advection may be an equally important
limitation. To examine this feature we calculate the
separate contributions of radial and vertical advection
to tn1 and tn2 in the expressions (15) and (16). These
contributions are shown in Figure 8 as functions of radius
at a height of 100 m, at which level the nonlinear terms
are a maximum. It is seen that the maximum values of the
vertical advection terms are about twice as large as the
maximum values of the radial advection terms, but there
are many radii at which the radial advection terms are as
large as, or even larger in magnitude than, the vertical
advection terms. Evidently the radial advection terms
cannot be ignored. The third terms in the expressions for
tn1 and tn2, i.e. −v′2/r and uv′/r , respectively, are seen
to be smaller than the corresponding advection terms in
the inner core region.

4. Discussion

The foregoing analysis points to serious limitations of the
linear boundary-layer solution when applied to the inner
core of hurricanes, even for radii well beyond the radius
of maximum gradient wind speed. However, there is a
further limitation that we have not yet touched upon. As
pointed out by Smith and Vogl (2008), it is probably
incorrect to prescribe the tangential wind speed just
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Figure 8. Radial profiles of the radial and vertical advection terms in
the expressions for (a) tn1 and (b) tn2. In (a), u1 refers to u(∂u/∂r)
and u2 to w(∂u/∂z), while in (b) v1 refers to u(∂v′/∂r) and v2 to
w(∂v′/∂z). Shown also for comparison are the additional terms in the
expressions, i.e. −v′2/r in tn1 and uv′/r in tn2, which are labelled
u3 and v3, respectively. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

above the boundary layer in the inner region, where the
flow exits the boundary layer. Many previous boundary-
layer models have taken this approach (e.g. Smith, 1968;
Ooyama, 1969; Leslie and Smith, 1970; Bode and Smith,
1975; Shapiro, 1983; Kepert, 2001; Smith, 2003), but
the consequences thereof have not been investigated or
discussed in detail. Presumably, with this limitation in
mind, Kepert and Wang (2001) used a boundary condition
that constrains the vertical gradient of the radial and
tangential velocity components to be zero at the top of
their computational domain. Nevertheless, because the
radial motion at this boundary turns out to be close to
zero (see their Figure 2), the tangential wind speed must
be close to the gradient wind at this boundary.

We concur with Kepert and Wang (2001) that it is more
reasonable to suppose that boundary-layer air carries its
momentum with it as it ascends out of the boundary layer
because this boundary is an ‘outflow boundary’ of the
problem. Unfortunately, it is not possible to accommodate
a zero vertical-gradient constraint in the analytic solution

of the linear model. Since the radius at which the vertical
motion reverses sign at the top of the boundary layer
occurs relatively far from the vortex centre in the linear
model, the inability to apply a zero vertical-gradient
constraint further limits the usefulness of the model when
applied to hurricanes. These remarks apply presumably
to the extension of the linear model to non-axisymmetric
flow worked out by Kepert (2001).

As argued by Smith and Vogl (2008), the same
limitation does not exist in a slab boundary-layer model
because the boundary-layer wind and gradient wind are
not the same at the top of the boundary layer, even
though the radial pressure gradient in the boundary layer
is the same as that above (see Smith and Montgomery
(2008) for a scale analysis for the slab boundary layer).
Nevertheless there are still challenging issues involved in
properly coupling a slab boundary layer to the flow above
(Smith et al. 2008).

Throughout this article we have assumed the turbulent
diffusivity to be constant with height and radius, a
feature that is a gross simplification. We believe that the
assumption that the diffusivity is constant with height
is adequate for present purposes when combined with a
bulk drag formulation of the surface layer (see e.g. Leslie
and Smith, 1970; Bode and Smith, 1975). Keeping K

constant with radius is potentially more serious as one
would certainly expect turbulence levels to rise as the
wind speeds increase significantly with decreasing radius.
Unfortunately observations provide little guidance on the
magnitude of this increase. In view of the result that the
linear boundary-layer theory breaks down in the region of
strong winds, it is questionable whether one would learn
much more from calculations in which such an increase
in K is postulated. Nevertheless, the scaling analysis in
section 2.1 suggests that any increase will be reflected in a
commensurate increase in the boundary-layer depth above
that predicted assuming a radially constant K . Similar
remarks apply to the representation of the surface drag
coefficient. Here we have used a constant value, whereas
observations suggest that it increases linearly with near-
surface wind speed, at least up to wind speeds of about
20 m s−1, after which it remains approximately constant
(see Black et al. 2006). However the behaviour of CD
has been determined only for wind speeds up to about
30 m s−1. We could have used the latest estimates for
the variation of CD in the foregoing calculations, but the
additional degree of sophistication seems unwarranted in
view of the limitations of the linear theory that we have
demonstrated.

5. Conclusions

We have derived the boundary-layer equations for a hur-
ricane from the Navier–Stokes equations, assuming that
the turbulent transfer of momentum can be characterized
by a constant eddy diffusivity in conjunction with a bulk
representation of surface drag. The derivation is based on
a detailed scale analysis of the Navier–Stokes equations.
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We showed how a linear form of the boundary-layer equa-
tions that has been studied by several previous authors can
be obtained as a weak friction limit of the full equations.
The weak friction limit formally assumes that the radial
and perturbation tangential velocity components are small
compared with the gradient wind speed above the bound-
ary layer and that the local Rossby number based on the
absolute vorticity of the gradient wind is of order unity
or less.

We showed height–radius plots of the three velocity
components derived from an analytic solution of the
linear boundary-layer equations. Interesting features are
the presence of supergradient winds at all radii and a
vertical velocity that has a weak local maximum just at
the top of the inflow layer near the radius of maximum
gradient wind speed. The radial profile of vertical velocity
at the top of the boundary layer for three tangential wind
profiles is similar in shape to those in a slab version of
the linear model. However, a recent study of the slab
model has shown that the profiles of vertical velocity in
the linear model are unrealistic compared with that in the
nonlinear version. In particular, the radius at which the
subsidence changes to ascent in the linear solution is far
too large. This would have important ramifications for the
integrity of the linear solution in the continuous model,
because the upper boundary condition that the tangential
wind tends to the gradient wind and the radial wind tends
to zero at the top of the boundary layer cannot be justified
when there is ascent out of the boundary layer.

We showed that the linear solution is not self-consistent
over a considerable range of radii because the magnitude
of the nonlinear terms calculated from this solution is
not much smaller than the linear terms themselves. This
conclusion is supported also by considering the relative
magnitude of terms in the scale analysis. These remarks
apply presumably also to non-axisymmetric extensions of
the linear theory.
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Appendix A: Tangential wind profiles, vg(r)

In the calculations described above we examined a set of
three profiles for the gradient wind of the form

vg(r) = V1se−α1s + V2se−α2s , where s = r

rm
,

where V1, V2, α1 and α2 are constants, chosen so that the
maximum wind speed vm is the same (40 m s−1) for each
profile and occurs at a radius rm = 40 km. In terms of the
parameters µ = V2/vm and α2 we can calculate α1 and
V1 using

α1 = (1 − µα2e−α2)/(1 − µe−α2),

V1 = vmeα1(1 − µeα2).

}
(A1)

The three wind profiles shown in Figure 1 are specified
by the values for (µ, α): (0.8, 0.4), (0.5, 0.3), and (0.5,
0.25). These profiles are all inertially stable (ξgζag > 0)
for the Coriolis parameter used (f = 5.0 × 10−5 s−1).

Appendix B: Solution of the linear model

Equations (9) and (10) may be readily solved by elim-
inating either u or v′ to give a fourth-order ordinary
differential equation for the other variable. For example,
eliminating u gives an equation for v′:

∂4v′

∂z4
+ I 2

K2
v′ = 0, (B1)

and then u is given by

u(z) = K

ζag

∂2v′(z)
∂z

. (B2)

Kepert (2001) showed that the solution of Equation
(B1) that is bounded as z → ∞ has the form

v′(z) = V1e−(1−i)z/δ + V2e−(1+i)z/δ, (B3)

where V1 and V2 are complex constants. This may be
written in the form

v′(z) = e−z/δ[A1 cos(z/δ) + A2 sin(z/δ)], (B4)

where A1 and A2 are constants determined by a second
boundary condition, e.g. for z = 0. The corresponding
solution for u is obtained by substituting (B4) into (B2),
i.e.

u(z) = − 2K

ζagδ2
e(−z/δ)[A2 cos(z/δ) − A1 sin(z/δ)]. (B5)

We apply a slip boundary condition at the surface
(z = 0) with a quadratic drag law for the surface stress.
Defining u = (vg + v′, u) and a drag coefficient CD, this
condition takes the form

K
∂u
∂z

= CD|u|z=0 u at z = 0. (B6)

Substituting the expressions (B5) for u and (B4) for v′,
we obtain

∂v′

∂z
|z=0 = (A2 − A1)

δ
and

∂u

∂z
|z=0 = 2K

ζagδ2

(A1 + A2)

δ
.
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With

|u|z=0 =
√

(vg + A1)
2 +

(
2K

ζagδ2

)2

A2
2,

the boundary condition at the surface gives two algebraic
equations:

A2 − A1 = ν
√

(. . . )(vg + A1),

A2 + A1 = −ν
√

(. . . )A2,

}
(B7)

where

√
. . . =

√(
1 + A1

vg

)2

+
(

2K

ζagδ2

)2 (
A2

vg

)2

and ν = CDRe with Re = vgδ/K . These two equations
may be solved to calculate the coefficients A1 and A2
and to obtain the full solutions (u(r, z), v(r, z), w(r, z))

in terms of the local tangential wind speed at the top of
the boundary layer, vg(r). The vertical velocity w(r, z) is
obtained by integrating the continuity equation (4) with
respect to height to give

w(r, z) = − ∂

∂r

(
1

r

∫ z

0
ru dz

)
,

where, using (B5),

∫ z

0
ru dz = e−z/δK

δζag

× [(A1 − A2) cos(z/δ) + (A1 + A2) sin(z/δ)].
(B8)
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