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A simple model of the hurricane boundary layer revisited
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ABSTRACT: A simple slab model for the boundary layer of a hurricane is re-examined and a small error in the original
calculation is corrected. With this correction, the development of supergradient winds is a ubiquitous feature of the solutions.
The boundary layer shows two types of behaviour in the inner core of the vortex depending on the depth of the layer and the
maximum tangential wind speed above the layer. For small depths and/or large tangential wind speeds, large supergradient
winds develop and lead to a rapid deceleration of the inflow such that the inflow becomes zero at some radius inside
the radius of maximum tangential wind speed above the boundary layer. For large depths and/or small tangential wind
speeds, the solutions do not become singular until within a few kilometres of the rotation axis. The transition between
the two regimes is very abrupt. Interpretations are given for the foregoing behaviour. Other aspects of the boundary-layer
dynamics and thermodynamics are investigated including: the dependence on mixing by shallow convection; the effects of
a radially varying boundary-layer depth; the effects of downward momentum transport; the dependence of thermodynamical
quantities on the boundary-layer depth; and the radial variation of equivalent potential temperature. Predicted values of
the last quantity are in acceptable agreement with observations made in category-five hurricane Isabel (2003). The version
with radially varying depth gives more realistic vertical velocities in the inner-core region of the vortex. The limitations
and strengths of the slab model are discussed. Copyright  2008 Royal Meteorological Society
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1. Introduction

The boundary layer is an important feature of a mature
hurricane as it strongly constrains the radial distribution
of vertical motion at its top as well as those of abso-
lute angular momentum and moisture. Over the years it
has been the subject of numerous theoretical investiga-
tions, many of them relating to axisymmetric vortices
(Rosenthal, 1962; Miller, 1965; Smith, 1968; Leslie and
Smith, 1970; Carrier, 1971; Eliassen, 1971; Bode and
Smith, 1975; Eliassen and Lystadt, 1977; Shapiro, 1983;
Montgomery et al., 2001; Smith, 2003) and a few to
asymmetric vortices (Shapiro, 1983; Kepert, 2001; Kepert
and Wang, 2001; Kepert, 2006a,b). With the exception
of Smith (2003, henceforth S03), these studies focused
exclusively on the dynamical constraints of the bound-
ary layer. The importance also of the thermodynamical
constraint was recognized by Emanuel (1986) and its
representation was a key feature in the simple axisym-
metric model he proposed for a mature hurricane. In
that model, the tangential wind field above the bound-
ary layer is assumed to be in thermal wind balance and
air parcels flowing upwards and outwards into the upper
troposphere are assumed to conserve their absolute angu-
lar momentum and moist entropy. The model is closed
by a simple, uniform-depth slab formulation for the
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boundary layer, which is used to determine a functional
relationship between the absolute angular momentum and
moist entropy of air parcels leaving the boundary layer.

In S03 the first author presented a slightly more sophis-
ticated model for the hurricane boundary layer than that
employed by Emanuel (1986), allowing for the effects
of gradient wind imbalance, mean subsidence at large
radii, and for the effects of shallow convection, which
have an important control on the radial variation of
thermodynamic quantities. (Without a representation of
mixing by shallow convection, the boundary layer satu-
rates at an unrealistically-large radius.) Again the model
was a steady, moist, axisymmetric, slab model of con-
stant depth, but the tangential wind speed at the top of
the layer was prescribed as a function of radius. With
these assumptions the boundary-layer equations reduce
to a set of coupled ordinary differential equations for
the radial variation of the boundary-layer wind, tem-
perature and moisture fields. High-resolution numerical
solutions of these equations were obtained by integrating
inwards from some large radius, where it is assumed that
geostrophic balance and convective–radiative equilib-
rium conditions prevail in the boundary layer. The model
was used to explore various aspects of the boundary layer
including the influence of vortex size and structure on the
radial distribution of key dynamic and thermodynamic
quantities. In particular it was shown that in some circum-
stances supergradient winds may develop in the bound-
ary layer near the radius of maximum tangential wind
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speed, a feature that has been found also in other studies
(Eliassen and Lystadt, 1977; Shapiro, 1983; Kepert, 2001;
Kepert and Wang, 2001; Kepert 2006a,b).

Recently it was discovered that the Runge–Kutta
subroutine used to integrate the equations contained an
error in the coefficients and, of course, this affects the
solutions. While rectifying this error and investigating
its implications, we discovered interesting new features
of the boundary-layer dynamics in the model, including
the occurrence of an abrupt qualitative change in the
character of the solutions when the boundary-layer depth
exceeds a certain threshold value (different boundary-
layer depths were not explored in S03). We believe that
these findings are worth reporting and such is one purpose
of the present paper. The new calculations led us to
examine the effects of allowing the boundary-layer depth
to vary with radius and to reappraise the assumptions
of boundary-layer theory in the inner-core region of the
vortex where the flow is upwards out of the boundary
layer. These aspects are discussed also.

This paper is organized as follows. The formulation of
the model is reviewed briefly in section 2. We examine
in section 3 the consequences of correcting the error in
the Runge–Kutta subroutine in S03 and go on in sec-
tion 4 to explore a range of features of the corrected
solutions including a newly discovered sensitivity of the
solutions to the chosen boundary-layer depth or to the
chosen vortex intensity. We examine also in section 4 the
dependence of the solutions on mixing by shallow con-
vection, the effects of allowing the boundary-layer depth
to vary radially, and of the downward momentum trans-
port. Thermodynamic aspects of the boundary layer are
described in section 5. Section 6 discusses some impli-
cations and limitations of the calculations and section 7
presents the conclusions.

2. Summary of the model

2.1. Boundary-layer equations

We consider the boundary layer of a steady axisymmetric
hurricane-like vortex on an f -plane. The boundary layer
is assumed to have uniform depth δ and constant density.
In a cylindrical coordinate system (r, φ, z), the vertically
integrated equations for radial momentum, azimuthal
momentum, heat or moisture, and continuity can be
written in the form:
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where ub and vb are the radial and azimuthal components
of wind speed in the boundary layer, vgr(r) is the
tangential wind speed and wδ the vertical velocity at the
top of the boundary layer, wδ− = (wδ − |wδ|)/2, χb is a
scalar quantity, taken here to be the dry static energy
or the specific humidity, f is the Coriolis parameter,
CD is the surface drag coefficient, Cχ is the surface
transfer coefficient for χb, χδ+ is the value of χ just
above the boundary layer, χs is the value of χ at the sea
surface, χ̇b is any source of χ , and the terms (u′w′)δ ,
(v′w′)δ , (χ ′w′)δ represent turbulent fluxes at the top of
the boundary layer. In the case of dry static energy,
χs = cpTs, where Ts is the sea surface temperature and
cp is the specific heat of air at constant pressure. Also,
χ̇b is the sum of −cpṪb, where Ṫb is the radiative cooling
rate, and CD(u2

b + v2
b)

3/2, which is the rate of generation
of enthalpy by frictional dissipation. Bister and Emanuel
(1998) showed that the dissipation term is significant at
hurricane-strength wind speeds. In the case of moisture,
χs is the saturation specific humidity at temperature Ts

and χ̇b = 0. We do not allow for condensation with latent
heat release in the boundary layer and check that the
boundary layer does not saturate (although the cloud
base will become lower as the boundary-layer humidity
increases). The quantities ub, vb and χb are assumed to
be independent of depth. Note that wδ− is non-zero only
when wδ < 0, in which case it is equal to wδ. Thus the
terms involving wδ− represent the transport of properties
from above the boundary layer that may be different
from those inside the boundary layer. A derivation of
the equations is given in S03, although in that paper the
flux terms were not explicitly included in the derivation,
but were added later.

S03 evaluates CD from the formula CD = CD0 +
CD1|ub|, where CD0 = 1.1 × 10−3, CD1 = 4 × 10−5 and
ub = (ub, vb, 0). He assumes also that Cχ = CD . We use
this formulation for the comparison with S03’s results in
section 4. Recently Black et al. (2007) presented new air-
craft measurements of the exchange coefficients for wind
speeds up to 30 m s−1. These measurements suggest that
CD no longer increases for wind speeds higher than about
20 m s−1, although there is considerable scatter in the
data. Therefore, for the calculations in later sections, we
take CD0 = 0.7 × 10−3 and CD1 = 6.5 × 10−5 for wind
speeds less than 20 m s−1 and CD = 2.0 × 10−3, a con-
stant, for larger wind speeds. These values are based on
our interpretation of Black et al.’s Figure 5. For Cχ we
simply take a constant value equal to 1.1 × 10−3, based
on their Figure 6. We found that the solutions are rel-
atively insensitive to these differences in the exchange
coefficients.
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Substitution of Equation (4) into Equation (1) gives an
expression for wδ:

wδ = δ

1 + α

[
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{
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+CD
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}
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r

]
, (5)

where α is zero if the expression in square brackets is
negative and unity if it is positive. With this expression
for wδ , Equations (2)–(4) form a system that may be
integrated radially inwards from some large radius R to
find ub, vb, and χb as functions of r , given values of these
quantities at r = R. In the case of specific humidity, we
need to calculate the surface moisture flux, which requires
a knowledge of the saturation specific humidity, qss, at
the surface. The latter quantity depends on the surface
pressure, ps, as well as Ts. While Ts is prescribed, ps

must be calculated simultaneously with the boundary-
layer quantities by integrating the gradient wind equation
in the form

dps

dr
= ρ

(
v2

gr

r
+ f vgr

)
.

2.2. Representation of shallow convection

An important feature of the convective boundary layer
over the tropical oceans in regions of large-scale subsi-
dence is the near ubiquity of shallow convection. Such
regions include the outer region of hurricanes. Shallow
convection plays a substantial role in the exchange of
heat and moisture between the subcloud layer, the layer
which is modelled in this paper, and the cloudy layer
above. As we do not predict the thermodynamic variables
represented by χδ+ above the boundary layer, we simply
choose a constant value for the mass flux of shallow con-
vection, wsc, and add this to wδ− in Equations (1)–(3)
(even if wδ− = 0). This is equivalent to representing
the flux terms η′w′

δ in these equations by wsc(η+ − ηb),
where η is one of the dependent variables u, v, χ and
a subscript ‘+’ denote a value just above the bound-
ary layer. However, wδ in Equation (4) is left unchanged
as shallow convection does not cause a net exchange of
mass between the cloud and subcloud layers. The value
for wsc is chosen to ensure that the thermodynamic pro-
file at r = R is in radiative–convective equilibrium as
explained in the next subsection.

2.3. Starting conditions at large radius

We assume that at r = R, far from the axis of rotation,
the flow above the boundary layer is steady and in
geostrophic balance with tangential wind speed vgr(R).
(An alternative assumption would be to assume a solution

of the linearized form of the full equations discussed in
Appendix B.) Then ub and vb satisfy the equations:

f (vgr − vb) = wδ− + wsc

δ
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1/2 ub, (6)
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b)

1/2 vb. (7)

A first approximation to the solution may be obtained
analytically after setting the first two terms on the right-
hand side of each equation to zero, i.e. by neglecting
momentum transport from above, and taking CD to be
equal to CD0 + CD1vgr(R). Then the vertical velocity at
r = R, wδ−(R), can be diagnosed in terms of vgr and
its radial derivative using the continuity equation (4).
Specifically

wδ−(R) = −δ

r

d

dr
(rub). (8)

This approximate solution is used as a first guess in an
iteration procedure for wsc that ensures zero moisture
tendency at r = R. Zero moisture tendency requires that
the rate of moisture gain from the sea surface is balanced
by the loss of moist air through the top of the boundary
layer and its replacement by dry air. The balance is
expressed by the equation

Cχ(u2
b + v2

b)
1/2(qs − qb) = (wsc + wδ−(R))(qb − qδ+),(9)

which, given the other quantities, is an equation for
wsc. Equations (6) and (7) are then resolved with wδ−
determined by (8) and wsc by (9) and the procedure
is repeated until stable values are obtained for wδ−
and wsc.

When wδ−(R) and wsc have been determined, Equa-
tions (6) and (7) are solved again, now with CD =
CD0 + CD1(u

2
b + v2

b)
1/2 to find new values of ub and

vb and the whole procedure is repeated until stable val-
ues are obtained for the five quantities: ub, vb, wδ−(R),
wsc and CD . The iteration requires Ts to be specified at
r = R together with the specific humidities in the bound-
ary layer, qb, and just above the boundary layer, qδ+.

With the final value for wsc obtained, we calculate the
temperature just above the boundary layer, Tδ+, so that
for a specified radiative cooling rate and air temperature
just above the surface, Tas, the sensible heat fluxes are in
equilibrium at r = R. Then

Tδ+ − Tδ− = 1

wsc

[
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where Tδ− is the temperature just below the boundary-
layer top. The temperature structure in the boundary
layer including both Tb and Tδ− is determined on the
assumption that the dry static energy is uniform across
the boundary layer. The last term in square brackets is
the dissipative heating. This is included for completeness
although at r = R it is small compared with other terms.

3. Comparison with S03

We examine first a calculation with the same param-
eters as in the control calculation described in sec-
tion 6 of S03, considering here only the dynamical
fields. The boundary-layer depth is 550 m and wsc is
−2.2 cm s−1. The profile of vgr is the same as that used
in S03, i.e. vgr = v1r

′ exp (−α1r
′) + v2r

′ exp (−α2r
′),

where r ′ = r/rm and rm the radius at which the tangen-
tial wind speed is a maximum and equal to vm. In the
calculations here, vm and rm are taken to be 40 m s−1

and 40 km respectively, corresponding with the values:
α1 = 1.4118, α2 = 0.3, v1 = 103.34 and v2 = 20.0.

Figure 1 shows a comparison of the radial and tan-
gential wind components and the total wind speed in
the boundary layer in the control calculation and the
corresponding quantities in S03. It shows also the tangen-
tial wind speed at the top of the boundary layer. While
many features are qualitatively similar, there are signifi-
cant quantitative differences in the corrected calculations
compared with those in S03. The tangential wind speed
in the boundary layer is mostly lower for r > rm, but
increases steeply as r approaches rm from above. Inside
a radius of 41.5 km it is supergradient and exceeds the
maximum vgr by 8 m s−1 at the radius where the solution
breaks down.

The radial wind speed is about twice as large as that in
S03 and reaches its maximum at about 50 km (1.25rm),
compared to a little more than 80 km (2rm) in S03.
However, ub becomes zero at a radius of about 28.4 km
(0.71rm) at which point the boundary-layer equations are

singular. Near this radius, radial gradients are so steep
that the underlying approximations of boundary-layer
theory become questionable. The rapid decline in ub near
the singular radius implies a large vertical velocity at the
top of the boundary layer. Indeed, the maximum upflow
is much larger than that in S03, exceeding several m s−1

near the radius where the solution breaks down. In S03
it is only 0.15 m s−1 and occurs 1 km inside rm.

Since the results of the new calculation exhibit a
behaviour that was not found in earlier studies (e.g.
Smith, 1968; Leslie and Smith, 1970; Bode and Smith,
1975) as well as in S03, we began a thorough investi-
gation of the dynamical and thermodynamical aspects of
the boundary layer, including checks using two indepen-
dent codes (one a Fortran90 code and the other using
Mathematica). These studies led to what we believe are
significant new findings, which are discussed below.

4. The new calculations – dynamical aspects

4.1. Dependence on boundary-layer depth

S03 investigated only a single boundary-layer depth,
which was chosen to be that of the subcloud layer in a
very simple model for radiative–convective equilibrium
at the starting radius. However it is of some theoretical
interest to enquire how the boundary-layer depth might
influence the inward evolution of the layer since it is clear
from Equations (1)–(3) that the ‘effective’ enthalpy and
moisture exchange coefficients are inversely proportional
to the assumed depth (e.g. the effective frictional stress is
the surface stress divided by the boundary-layer depth).

For the remaining calculations we incorporate addi-
tional modifications to the model described by S03,
using the more up-to-date representations of the drag
and heat/moisture exchange coefficients and implement-
ing the new radiative-convective equilibrium scheme
described in section 2.2. These changes required the
choice of slightly different values for the thermody-
namic input parameters to achieve an equilibrium state.

Figure 1. Comparison of radial profiles of radial (ub) and tangential (vb) wind components and the total wind speed, (vv) in the boundary layer
as well as the tangential wind speed above the boundary layer (vgr) for (a) the new calculation and (b) the corresponding calculation in S03.

Units are m s−1. The boundary-layer depth, δ, is 550 m.
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Figure 2. As Figure 1, but for two calculations (using modifications described in section 4.1) with boundary-layer depths (a) 550 m and (b) 800 m.

The values used are: ps = 1015 mb, Ts = 29 °C, Tas =
28.5 °C, qb = 14 g kg−1, qδ+ = 13.4 g kg−1, and Ṫb =
2.4 °C day−1. These lead to values for Tδ+ and wsc of
21.7 °C and −5.7 cm s−1, respectively.

The results of calculations similar to those described
in section 3, but for boundary-layer depths 550 m and
800 m are summarized in Figure 2, which shows graphs
similar to those in Figure 1. The flow behaviour in the
calculation for δ = 550 m (Figure 2(a)) is similar to that
for δ = 550 m in Figure 1(a). However, the solution
becomes singular (i.e. ub → 0) at a larger radius: 35 km
compared with 28.4 km. In addition, the maximum radial
wind speed is lower (16 m s−1 compared with 21 m s−1)
and occurs at a slightly larger radius (54.7 km compared
with 50 km). The maximum vertical velocity out of the
boundary layer is less also: 1.8 m s−1 at r = 35 km
compared with 3.8 m s−1 at r = 28.4 km in the case with
δ = 550 m.

As the boundary-layer depth is increased to 679 m
(figure not shown), the radius at which the solution
becomes singular increases to 40 km, the maximum
radial wind speed decreases to 14 m s−1, and the radius
at which it occurs increases to 63 km. The maximum

vertical velocity out of the boundary layer is slightly
smaller (1.6 m s−1) and occurs at r = 40 km.

As δ is increased beyond 679 m, a dramatic transition
occurs in the solution behaviour, exemplified by the
solution for 800 m (Figure 2(b)). For δ = 680 m and
beyond, the solution for r < rm is quite different from
that for δ ≤ 679 m and extends to within a few kilometres
of the rotation axis. In this ‘large depth’ regime, the
tangential wind speed in the boundary layer becomes
subgradient again after reaching its peak supergradient
value. Thereafter it oscillates about the prescribed wind
profile above the boundary layer with ever-decreasing
amplitude as the axis is approached. The oscillations are
accompanied by oscillations of the radial wind field and
therefore in the vertical flow at the top of the boundary
layer. This behaviour is similar to that described in S03
for a vortex with rm = 100 km.

The vertical motion at the top of the boundary layer in
the calculations with boundary-layer depths of 550 m and
800 m are shown in Figure 3. Near the starting radius
(not shown in the figure), there is a slight adjustment
of wδ on account of the sudden introduction of the
inertial acceleration terms in the boundary layer, but

Figure 3. Radial profiles of vertical velocity (wδ) at the top of the boundary layer in the calculations with boundary-layer depths of 550 m and
800 m. (b) is plotted with different scales to highlight the inner-core region. Units are cm s−1.
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the subsidence velocities at large radii are relatively
weak. The subsidence increases with decreasing radius
and then decreases again shortly before changing to
ascent. The change from subsidence to ascent occurs at
a radius of 130 km when δ = 550 km and 155 km when
δ = 800 km. Reasons for these differences are discussed
below.

The dependence of the solutions on the boundary-
layer depth is succinctly summarized by plots of the
maximum radial and tangential components of wind
speed and the radii at which these occur as functions of δ

(Figure 4). As δ increases, the effective frictional stress
(i.e. the surface stress divided by the boundary-layer
depth) decreases, and the degree of supergradient flow
progressively diminishes. This behaviour is shown by the
difference between the maximum tangential wind speed
in the boundary layer, vbmax, and the tangential wind
speed above the boundary layer at the radius rv at which
vbmax occurs (Figure 4(a)). In contrast, rv increases with
increasing δ (Figure 4(b)). The maximum inflow, ubmax,
decreases also (Figure 4(a)), while the radius at which
it occurs increases (Figure 4(b)). The radius at which the
flow first becomes supergradient increases almost linearly
with increasing δ.

4.2. Interpretation

The foregoing behaviour depends in a delicate way on the
relative importance of various force terms in the radial
and tangential components of the momentum equation.
To aid the interpretation we rewrite Equations (1) and
(2) in the following form:

dus

ds
= wδ− + wsc

δ
− (vgr − vb)

us

(
vgr + vb

R − s
+ f

)

− CD

δ
(u2

s + v2
b)

1/2, (11)

dvb

ds
= wδ− + wsc

δ

vb − vgr

us
+ vb

R − s
+ f

− CD

δ
(u2

s + v2
b)

1/2 vb

us
, (12)

where us = −ub is the radial inflow velocity and s =
R − r is the distance inwards from the starting radius. In
addition we have replaced the flux terms on the far right
of Equation (1) and (2) with the formulation described
in section 2.2. In this form the equations show how the
(inward) radial and tangential components of flow change
with decreasing radius.

In the absence of frictional stresses, converging rings
of air would conserve their absolute angular momentum,
rv + 1

2f r2, and spin faster (here v is the tangential com-
ponent of wind speed). In the boundary layer, they still
spin faster, but the rate at which vb increases is reduced
by the frictional torque. This effect is represented by the
last term in Equation (12). The development of super-
gradient winds requires a sufficiently large radial dis-
placement of air parcels in the boundary layer, which
in turn requires a sufficiently large radial inflow. From
a Lagrangian viewpoint one may think of air parcels
spiralling inwards: the slower they move inwards, the
longer tracks they have along which friction can act to
reduce vb. This effect is partially offset by the downward
transfer of azimuthal momentum. These effects are con-
tained in the terms proportional to the inverse of us in
Equation (12). It is clear from the foregoing discussion
that the development of supergradient winds depends on
the radial gradient of absolute angular momentum in the
boundary layer and hence on that above the layer, a fea-
ture explored in the context of a linear boundary-layer
model by Kepert (2001) and Kepert and Wang (2001).

Equation (11) shows that the only term that can cause
a radially inward acceleration in the slab model is the
second one on the right-hand side. This term represents
the net inward force arising from the difference between

Figure 4. (a) Maximum radial and tangential wind speeds in the boundary layer, ubmax and vbmax, and the tangential wind speed vgr, at the top
of the boundary layer at the radius where vbmax occurs, as functions of boundary-layer depth. (b) Radii ru and rv where the maximum radial
and tangential wind speeds occur as functions of boundary-layer depth. Panel (b) also shows the first radius, rsg, at which, starting from r = R,
the tangential wind speed becomes supergradient. The solid horizontal line in panel (a) indicates the maximum tangential wind speed at the top

of the boundary layer, vm, and that in panel (b) the radius, rm, at which this maximum occurs.

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 337–351 (2008)
DOI: 10.1002/qj



THE HURRICANE BOUNDARY LAYER 343

the radial pressure gradient and the centrifugal and
Coriolis forces. The first and third terms in this equation
represent the effects of the downward transport of radial
momentum (zero in the present model) and the frictional
stress, respectively, and both of these act to reduce the
radial inflow. If the flow is supergradient, i.e. if vb > vgr,
the net (inward) force acts radially outwards also.

The net inward force increases with the degree to
which the tangential flow in the boundary layer is
subgradient (i.e. to vgr − vb), which in turn increases
as the effective frictional torque increases. Equation (12)
shows that this torque is the only term that leads to a
reduction of vb with decreasing radius as long as the
flow in the boundary layer remains supergradient (In the
continuous model, the vertical diffusion of momentum is
important also (Kepert, 2001).). Since the friction terms
are inversely proportional to the boundary-layer depth,
it follows that shallower boundary layers favour lower
tangential wind speeds, but larger radial wind speeds,
because, at least in the outer part of the vortex, they
lead to a larger net inward force. At inner radii the
situation is a little different. Then the term vb/(R − s)

in Equation (12) becomes large and contributes to an
increase in vb with s. Thus larger radial wind speeds
favour larger tangential wind speeds because then air
parcels may penetrate rapidly to smaller radii where
this effect is important. In addition they suffer less total
frictional torque on the way. (Note that the frictional term
in Equation (12) decreases as us increases.)

The key to what determines the two flow regimes
depends on which of the foregoing processes dominates
and boils down to whether or not the flow can become
subgradient again before us becomes zero. In the calcula-
tion with δ = 680 m, the tangential flow just manages to
become subgradient before us becomes zero, whereupon
the inflow begins again to accelerate. Because the tangen-
tial wind speed at the top of the boundary layer decreases
also, the flow becomes supergradient once more, where-
upon us decreases rapidly and vb − vgr decreases until vb

becomes subgradient again. These fluctuations are a kind
of damped inertial oscillation as described in S03.

We do not attribute much significance to these waves
in reality and consider them to be most likely an artifact
of prescribing the radial pressure gradient at the top of the
boundary layer. The radial scale of the waves is on the
order of a few kilometres and decreases with radius. Thus
they would not be resolvable by most numerical models
of hurricanes. Moreover the implied radial gradients
associated with them would stretch the assumption of
boundary-layer theory that radial gradients of quantities
are small compared with vertical gradients. It turns
that the oscillations have much smaller amplitudes in
calculations that allow the boundary depth to decline with
radius (see section 4.5).

The dynamical interpretations given above provide also
an explanation for the differences in the radial location by
which wδ changes sign in Figure 3. The larger effective
friction for the shallower boundary layer implies a larger
net radially inward force, which, in turn, leads to a larger

acceleration of the radial flow and a decrease in the
radius at which the radial gradient of inward mass flux
changes sign.

The breakdown in the solution when ub becomes zero
is analogous to the breakdown in the solution for a
buoyant plume or thermal when it overshoots its level
of neutral buoyancy and its vertical velocity falls to zero
(Morton et al., 1956; Betts, 1973). In these cases also,
the assumed constraint of one-dimensional flow does not
allow the flow to reverse.

4.3. Dependence on vortex intensity

Decreasing the vortex intensity has a similar effect to
increasing the boundary-layer depth. A repeat of the
control calculation for different values of the maximum
tangential wind speed at the top of the boundary layer, vm,
shows that as vm decreases, the strength of supergradient
winds decreases. In addition, the transition in regime
from one in which ub becomes zero before vb reduces
to vgr to one in which vb oscillates about vgr occurs
at a smaller boundary-layer depth. For example, when
δ = 550 m, the regime transition occurs if vm is reduced
by just 8 m s−1 to 32 m s−1. As vm decreases further, the
behaviour is similar to that when δ increases at fixed vm.
These findings are consistent with the results of Kepert
(2001). In his Figure 1, he shows that a larger gradient
wind speed leads to a stronger jet, i.e. to an increase
in the strength of supergradient winds. The behaviour
discussed above suggests that it might be possible to re-
scale the equations in a way that the vm and δ dependence
condenses into a single parameter, but this does not
appear to be the case.

4.4. Dependence on mixing by shallow convection

S03 showed that it is important to include a represen-
tation of downward mixing by shallow convection to
prevent the boundary layer from completely saturating.
The formulation is necessarily crude because thermody-
namic quantities are not predicted above the boundary
layer. This means that there is no physical basis for
allowing the mass transport due to shallow convection
to vary with radius. Nevertheless it is pertinent to ask
how sensitive the foregoing results are to the magnitude
chosen for wsc. To answer this question we carried out
two additional calculations similar to the control calcu-
lation, but with wsc = 0 in one and wsc = −10 cm s−1

in the other. It turns out that for wsc = 0, the transi-
tion in boundary-layer behaviour described in section 4.1
occurs at a larger boundary-layer depth (765 m instead
of 680 m). In the case where wsc = −10 cm s−1, there is
no transition in behaviour for any boundary-layer depth.
The tangential wind speed in the boundary layer becomes
subgradient again after reaching its maximum value and
then oscillates about the prescribed wind profile for any
boundary-layer depth. At the same time the radial wind
and vertical flow oscillate. The complete range of effects
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Figure 5. (a) Maximum radial and tangential wind speeds (un and vn, respectively, n = 1 − 3) in the boundary layer, and the tangential wind
speed at the top of the boundary layer at the radius at which the maximum vn occurs, as functions of boundary-layer depth for three different
values for wsc: 0, −5, and −10 cm s−1. (b) Radii at which the maximum radial and tangential wind speeds occur (run and rvn, respectively) as

functions of boundary-layer depth. Solid horizontal lines are as in Figure 4.

is summarized in Figure 5, which plots the maximum val-
ues of radial and tangential wind speed in the boundary
layer and the radii where the maxima occur as func-
tions of δ for the three values of wsc. It is seen that
for a fixed value of δ, the maximum of both the radial
and tangential components decreases as |wsc| increases.
The maximum in the inflow increases also with decreas-
ing boundary-layer depth, and this is true of the degree
of supergradient wind speed for wsc = 0. However for
|wsc| = 5 cm s−1 and 10 cm s−1, the degree of super-
gradient wind speed is a maximum for an intermediate
value of δ in the range shown. The reason for the fore-
going behaviour is that the downward mixing of radial
momentum by shallow convection reduces the strength
of the inflow directly, while that of azimuthal momentum
reduces the net inward force, which reduces the inflow
indirectly. The reduced inflow diminishes the strength of
supergradient winds that can be achieved. For a particu-
lar value of wsc, these effects are reduced by a decrease
in δ, which increases the effective frictional force in the
boundary layer. The radii at which the maxima in ub and
vb occur increase with δ, the rate of increase being largest
for the case with no mixing.

The maximum amount by which the tangential wind
becomes supergradient (graphs not shown) is sensitive
to changes in wsc and decrease significantly as |wsc|
increases. The maximum vertical flow at the top of the
boundary layer decreases a little also and the radius at
which it occurs increases.

4.5. Effects of radially varying boundary-layer depth

The model described in section 2 assumes a con-
stant boundary-layer depth, although a scale analy-
sis of the equations as well as the linear solution to
the full boundary-layer equations (Eliassen and Lystad,
1977; Kepert, 2001) suggests that the depth should
decrease with declining radius at a rate inversly pro-
portional to

√
I , where I = (ζ + f )(2vgr/r + f ) and
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Figure 6. Assumed radial variation of the ratio of boundary-layer depth,
δ(r), to that at radius R, δ(R), for the calculations shown in Figure 7.

ζ = (1/r)d(rvgr)/dr is the vertical component of rela-
tive vorticity at the top of the boundary layer. While it
is not possible to determine the radial variation of δ in
the slab model, it is straightforward to modify the Equa-
tions (1)–(4) to allow for a prescribed variation δ(r) (see
Appendix). To assess the effect of a decrease in δ with
declining radius, we carried out a calculation in which
δ(r) = δ(R)

√
(Ig/I), where δ(R) is the boundary layer

depth at r = R and Ig is the value of I at this radius.
The radial variation of δ(r)/δ(R) for the vortex pro-
file used here is shown in Figure 6. The solutions for
δ(R) = 550 m and 800 m are shown in Figure 7. In both
cases the tangential wind speeds in the boundary layer
are decreased, especially inside a region of about 200 km
and the peak winds are significantly lower in magnitude
than vm. In contrast, the peak radial winds are larger
than in the constant-depth calculations, especially in the
calculation for δ(R) = 800 m and the maxima occur at
markedly smaller radii. These differences in behaviour
are consistent with the ideas presented in section 4.2,
noting that a decreasing boundary-layer depth implies
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Figure 7. Comparison of radial and tangential wind speeds in the boundary layer in the control calculation, which has a fixed depth δ(R), and a
calculation in which δ(r) = δ(R)

√
(Ig/I), for (a) δ(R) = 550 m, and (b) δ(R) = 800 m. Panels (c) and (d) show the corresponding comparisons

of the vertical velocity at the top of the boundary layer.

a larger effective drag through the layer. When the
boundary-layer depth decreases with decreasing radius,
the maximum vertical velocity at the top of the layer is
reduced considerably from that in the constant-depth cal-
culations and is more in line with that in previous calcu-
lations (e.g. Kepert and Wang, 2001: see their Figure 3).
The reducing-depth calculations still show slightly super-
gradient wind speeds and oscillations in radial and verti-
cal motion, but now well inside rm and again in a region
where radial gradients are probably steep enough to inval-
idate the assumptions of boundary-layer theory.

4.6. Effects of downward momentum transport

The calculations of S03 showed that where there is inflow
into the boundary layer (wδ < 0), the contribution of
the terms involving wδ− < 0 to the radial derivatives on
the left of Equations (1)–(3) is small. This suggests that
a simplified approximate system of equations could be
obtained by setting wδ− = 0 in these equations and by
calculating wδ = 0 from the continuity equation, Equa-
tion (4). We explore here the accuracy of this approxi-
mation in the case where the boundary-layer depth is a
constant.

Figure 8 compares the radial and tangential wind com-
ponents in the boundary layer and the vertical motion at

the top of the boundary layer in two calculations, one like
the control calculation but, with a boundary layer depth
of 940 m and no representation of shallow convection,
the other just the same but with the foregoing approxi-
mations. Evidently the approximation is quite acceptable.
The neglect of the downward transport of momentum by
the mean vertical motion reduces slightly the tangential
wind component, thereby increasing the net radial force,
but it increases the inflow slightly. This increase is partly
a result of the lack of downward mixing of zero radial
momentum and partly due to the increased net inward
force. The predicted vertical velocity is marginally higher
within a radius of about 210 km (Figure 8(b)), but there
is little difference beyond that radius. Even at radii less
than rm, the vertical motion is similar until a radius of
about 50 km, where the approximate calculation breaks
down. Evidently, for this boundary-layer depth, the cal-
culation is very close to its transition point as the radial
wind speed becomes almost zero.

4.7. Vertical motion at the top of the boundary layer

The formula for the vertical velocity at the top of the
boundary layer (Equation 5) differs considerably from
that derived by Kepert (2001), his Equation (28), which
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Figure 8. (a) Comparison of the radial and tangential wind speeds for a calculation with δ = 940 m and without shallow convection (u1 and v1),
and one in which wδ− is set to zero (u2 and v2). (b) compares the vertical motion (w1 and w2) at the top of the boundary layer in these two

calculations.

is based on a linear approximation to the full boundary-
layer equations that allow for vertical structure, and from
that obtained from the analogous linear approximation
to the slab model (see Appendix B). The differences
in vertical motion predicted by these different formulae
for the tangential wind profile vgr used here are shown
in Figure 9. It is seen that the vertical velocity profile
in the full nonlinear model is more peaked than in the
approximate theories and the maximum upflow velocity
is more than twice that of the linear theories and occurs
at a significantly smaller radius. The linear slab model
and the more complete version give similar profiles and
similar maxima, but the maximum inflow occurs at a
larger radius in the slab model.

5. The new calculations – thermodynamical aspects

5.1. Dependence on boundary-layer depth

The solutions for the thermodynamic variables obtained
in the new calculations are qualitatively similar to those
obtained by S03, but there are some quantitative dif-
ferences. Since the present calculations include, inter
alia, an improved algorithm for calculating the radia-
tive–convective equilibrium state at the starting radius
and have slightly different parameter values, a detailed
quantitative comparison is not warranted. We show two
of the new solutions here for constant boundary-layer
depths of 550 m and 800 m. The details are summarized
in Figure 10.

The boundary-layer temperature is nearly constant in
both cases with a value of about 25.8 °C for δ = 550 m
and 24.5 °C for δ = 800 m, but shows a small rise in
the inner-core region at radii less than about 100 km.
In essence, the mean boundary-layer temperature largely
follows the sea surface temperature, but since the tem-
perature in the boundary layer decreases adiabatically
with height, Tb < Ts. The increase in the core region is
associated with dissipative heating, which appears to be

Figure 9. Comparison of vertical motion at the boundary-layer top
(800 m) predicted by the nonlinear slab model (solid line), the linear
slab model (LS) and the linear model that allows the boundary layer

to have vertical structure (LC).

significant at high wind speeds. Consistent with this heat-
ing, the sensible heat fluxes are slightly negative in the
core region. Recently Smith (2006, 2007) showed that
an inviscid balanced vortex where the tangential circula-
tion decays with height is cold-cored at the surface. The
present calculations show that this is not the case when
one accounts for the boundary-layer effects, neglect-
ing, of course, ocean surface cooling brought about by
upwelling induced by the strong surface winds and the
effects of unsaturated convective downdraughts (Cione
et al., 2000). The results suggest also that the effects of
adiabatic cooling as air parcels move inwards towards
lower pressure is more than outweighed by the sensible
heat fluxes and, in the core region, by dissipative heating.

The specific humidity increases markedly with decreas-
ing radius from a value of 14.5 g kg−1 at r = 500 km to
about 17.8 g kg−1 at r = 35 km. This increase is asso-
ciated with an increasing surface moisture flux, which
outweighs the flux of dry air through the top of the bound-
ary layer (Figure 10(b) and (d)). The saturation specific
humidity, qbs, for a boundary layer depth of 550 m varies
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Figure 10. Radial profiles of boundary-layer temperature, Tb (°C), specific humidity, qb, saturation specific humidity, qsb, and the saturation
specific humidity at the sea surface, qss (all g kg−1), for boundary-layer depths (a) 550 m and (c) 800 m. (b) and (d) show corresponding latent
and sensible heat fluxes from the sea surface (fluxq and fluxh, respectively) and through the top of the boundary layer (fluxqt and fluxht). All

fluxes are given in W m−2. The sign of fluxht has been reversed for convenience of plotting.

between 21.3 and 23.2 g kg−1 for radii between 500 km
and about 35 km. The values for the deeper boundary
layer (δ = 800 m) are typically about 1.5 g kg−1 smaller.
It is interesting to note that in both cases, qb < qss at all
radii. Thus the air does not become saturated near the sea
surface, but the lifting condensation level lowers as the
boundary layer moistens.

The latent heat fluxes are much larger than the sensible
heat fluxes and they increase strongly with decreasing
radius. The increase of the surface flux reflects the fact
that this flux increases with the near-surface wind speed
and with the degree of disequilibrium between specific
humidity of the air near the surface and the saturation
specific humidity at the sea surface temperature. Since
the latter increases with decreasing pressure, the degree
of disequilibrium is maintained (Figure 10(a) and (c))
and, of course, the wind speed increases with decreasing
radius to a radius of 40 km. The increase in boundary-
layer moisture increases the moisture contrast at the top
of the boundary layer, since the specific humidity of
air above the boundary layer is held constant in the
present model. It is this increase in moisture contrast

that accounts for the increase in the magnitude of the
latent heat flux at the top of the boundary layer as the
radius decreases. This increase in moisture contrast is not
likely to be realistic, as convection would be expected
to progressively increase the moisture content of the air
above the boundary layer with decreasing radius. For
this reason, we would expect the predicted increase in
qb with decreasing radius to be a lower bound of that
which would occur in reality.

The curves for the latent heat flux at the top of the
boundary layer show a kink at the radius where wδ

changes sign (about 130 km for δ = 550 m and 150 km
for δ = 800 m). Inside these radii, wδ− is zero and does
not contribute to the fluxes at z = δ. At very large radii,
wsc dominates so that the moisture flux terms are similar
for both values of δ, but as the radius decreases, wδ−
becomes significant and the terms diverge from one
another.

There is less sensitivity of the thermodynamic quan-
tities to a radially varying boundary-layer depth com-
pared with dynamical quantities. As expected, calcula-
tions for δ(R) = 550 m and δ(R) = 800 m give values
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of temperature and humidity at large radii similiar to
those in the case with constant δ (not shown), but the
values at the radius of maximum tangential wind speed
above the boundary layer are slightly higher (about 1 °C
in the case of Tb and up to 1.5 g kg−1 in the case of
qb) than those shown in Figure 10. In the varying-depth
calculations, Tb and qb reach nearly the same peak val-
ues (Tb = 28.5 °C and qb = 18 g kg−1) for both values of
δ(R) because the boundary-layer depths become similar
at inner radii. Because vertical velocities in these calcula-
tions are much less than in the constant depth ones, there
are no discernible kinks in the moisture fluxes at the top
of the boundary layer like those in Figure 10.

5.2. The reversible equivalent potential temperature
and the effects of radially varying boundary-layer depth

A thermodynamic quantity of fundamental theoretical
interest is the reversible equivalent potential temperature,
θe, as it has been used in developing a theory for the
potential intensity of tropical cyclones (Emanuel, 1986,
1988, 1995; Bister and Emanuel, 1998). For this reason
we show in Figure 11 the radial variation of θe for the
case with a boundary-layer depth that varies as described
in section 4.5. In this figure, θe1 and θe2 label the curves
for δ(R) = 550 m, and δ(R) = 800 m, respectively. In
both calculations, θe increases with decreasing radius,
while a deeper boundary layer leads to marginally lower
values.

Recently Montgomery et al. (2006) and Bell and
Montgomery (2008) presented observational data from
the category-five hurricane Isabel (2003), including data
showing the radial increase of θe towards the centre. Such
an increase is shown by our model also. To be able
to compare the predictions of our model quantitatively
with their measurements, we carried out two more
calculations for the same boundary-layer depths, but with
a maximum tangential wind speed of 70 m s−1, which is
more appropriate for a category-five storm like Isabel.
The two θe curves for these calculations are shown also
in Figure 11 where they are labelled θe3 and θe4 for
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Figure 11. Radial profiles of reversible equivalent potential temperature
(K) in the boundary layer for a maximum tangential wind speed of
40 m s−1 with δ(R) = 550 m (θe1) and δ(R) = 800 m (θe2) and for a

maximum wind speed of 70 m s−1 (θe3 and θe4).

δ(R) = 550 m and 800 m, respectively. As expected, θe

reaches higher values than for the weaker vortex, but the
difference between the values of θe for the two values of δ

is larger. For δ(R) = 550 m and a maximum tangential
wind speed of 70 m s−1, the solution breaks down at
a radius of about 60 km, but the solutions up to this
point show a steady increase in θe, which reaches a value
of approximately 355 K. This value is not outrageous
compared with the values reported by Montgomery et al.
(2006), especially considering the crudity of holding wsc

and qδ+ constant with radius in our model. For example,
on 12 September 2003 they found values of θe of about
353 K at radii between 50 and 60 km in the low-level
inflow layer and up to 360 K on 12 September (Figure 5
in their paper). Moreover these values continued to rise
with decreasing radius as they do in our model until
the model breaks down. Montgomery et al. calculated θe

pseudo-adiabatically but, at low levels in the boundary
layer where there is no liquid water, these should be
essentially the same.

6. Discussion

Although many simple hurricane models represent the
boundary layer as a single layer of fixed depth, such
formulations have a number of limitations and these
should be borne in mind when interpreting the results of
our study. These limitations are reviewed below, followed
by a discussion of certain important issues arising from
the results.

• One assumption in deriving the bulk equations is that
the vertical average of terms such as those represent-
ing radial advection is equal to the radial advection
computed from vertically averaged quantities. This
assumption may be expected to be inaccurate if there
are regions of strong outflow overlying regions of
inflow, as happens near the radius of maximum tangen-
tial wind speed in the continuous models (e.g. Kepert
and Wang, 2001; Montgomery et al., 2001). However,
this should be much less of an issue if the boundary
layer is considered to be just the inflow layer, itself, as
is the case here.

• The prescription of a uniform depth with radius is a
limitation also as an elementary scale analysis suggests
that the layer depth must decrease as the inertial
stability increases, a result that is confirmed by many
solutions where the depth is allowed to vary (e.g.
Smith, 1968; Leslie and Smith, 1970; Eliassen and
Lystad, 1977; Kepert, 2001; Kepert and Wang, 2001;
Montgomery et al., 2001). This limitation may be
removed as shown in section 4.5.

• At large radii, where there is mean subsidence into
the boundary layer, the boundary-layer depth will be
determined in reality by a subtle balance between the
turbulence generated within it, which tends to deepen
it, and the subsidence aloft, which tends to make it
shallower. At inner radii, where there is mean ascent
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out of the boundary layer, the vertical advection of
turbulence may be expected to play a role also in
determining the depth (e.g. Stull, 1988, especially
Figure 1.6 and the related discussion). Such processes
cannot be captured by a one-layer model, but they
have important implications for the veracity of the
formulation at inner radii.

• It is probably incorrect to prescribe the tangential
wind speed just above the boundary layer in the
inner region, where the flow exits the boundary layer.
Many previous boundary-layer models have taken this
approach (e.g. Smith, 1968; Ooyama, 1969; Leslie
and Smith, 1970; Bode and Smith, 1975; Shapiro,
1983; Kepert, 2001; Kepert and Wang, 2001; Smith,
2003), but the consequences thereof have not been
investigated or discussed in detail. In this region it
would seem more reasonable to suppose that boundary-
layer air carries its momentum with it as it ascends as
this is an ‘outflow boundary’ of the problem.

The last item raises certain issues that we believe to
be important. Recognition that region of ascent is an
outflow boundary would imply that the exiting air in the
slab model carries the momentum ρ(ub, vb) with it. This
requirement was tacitly recognized by Emanuel (1986)
in his formulation of a steady-state hurricane model. In
this model he assumed that the tangential flow just above
the boundary layer (vgr) is equal to that in the boundary
layer (vb) in regions of ascent and that it satisfies gradient
wind balance. Emanuel makes a similar assumption also
in his theory for potential intensity (Bister and Emanuel,
1998 and references therein). Of course, this assumption
implies that gradient-wind balance exists also in the
boundary layer, which would mean no net force to drive
inflow! In contrast, we would argue that there is no reason
to suppose that vb will be in gradient wind balance as it
exits the boundary layer.

In the slab models, (ub, vb) represents an average
through the depth of the boundary layer so that some
difference between (ub, vb) and the imposed gradient
flow (0, vgr) at the top of the boundary could be tolerated.
In these models, at least, it may be best to regard the
prescription of vgr as simply a specification of the radial
pressure gradient and the only place in the formulation
where this would lead to inconsistency would be in
the assumption that the momentum fluxes at the top of
the boundary layer associated with shallow convection
or precipitation-driven downdraughts are proportional to
(0, vgr) − (ub, vb). Except for this assumption, the slab
model would appear to be less constrained than those
which have vertical structure and which assume not only
that the flow exiting the boundary layer has a prescribed
radial pressure gradient, but also that (u(z), v(z)) →
(0, vgr) at the top of the boundary layer, where vgr

is in gradient wind balance (here z is the vertical
coordinate). Some implications vis-à-vis previous studies
are as follows.

• The mismatch between (ub, vb) and (0, vgr) predicted
by the slab model suggests that the outflow jet found
above the inflow layer in the full numerical solutions
(Note that in these solutions, the boundary layer
and flow above are solved together.) presented by
Montgomery et al. (2001) is a means by which the
flow exiting the boundary layer adjusts to the radial
pressure gradient associated with the vortex above
the boundary layer. The implication is that a more
complete formulation of the (steady) boundary layer
in the inner-core region of a tropical cyclone using a
slab-type formulation would require at least two layers
including one to represent the outflow jet. In this layer,
the radial and tangential wind fields would need to
adjust to the radial pressure gradient implied by the
mass distribution in the free troposphere.

• Models that allow the boundary layer to have vertical
structure do not avoid the problems of unrealistically
over-constraining the flow that exits the boundary layer
if they set (u(z), v(z)) equal to (0, vgr) at the top of the
layer. For example, the solutions reported by Kepert
and Wang (2001, their Figure 2) show supergradient
flow everywhere above the boundary layer (as defined
by the region where there are significant turbulence
levels) even in regions where turbulence levels are
small and where there is no apparent radial or vertical
motion. The reasons for these supergradient winds are
hard to reconcile in terms of the insights gained from
the slab model, which requires strong inflow to achieve
supergradient winds. That is not to say that Kepert
and Wang’s results are incorrect, but they need to be
understood. It is signifcant that the numerical solutions
of Montgomery et al. (2001), in which no constraint
needs to be imposed at the top of the boundary
layer, do not show a single level above the boundary
layer where the radial flow is everywhere zero. We
regard these issues as important ones requiring further
research.

• We would argue that the ubiquitous tendency of
the slab model to produce supergradient winds is
significant. A well-known result from the inviscid
axisymmetric balanced theory of vortex intensification
is that the latent heat release in eye-wall convection
tends to produce a secondary circulation in which
the tangential wind tendency is largest inside the
radius of maximum tangential wind speed (Shapiro
and Willoughby, 1982) so that the vortex contracts as
it intensifies. If the boundary layer tends to generate
supergradient winds inside the radius of maximum
tangential wind speed above it, and if these winds
are advected vertically out of the boundary layer, they
would contribute in a similar way to a spin-up of
the core region. Such behaviour is consistent with
calculations performed by our late colleague, Wolfgang
Ulrich. Using an axisymmetric tropical cyclone model,
he found that the ring of air corresponding with the
maximum calculated tangential wind speed always
originated at large radial distances in the boundary
layer. The idea is supported also by the simple tropical

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 337–351 (2008)
DOI: 10.1002/qj



350 R. K. SMITH AND S. VOGL

cyclone model examined by Emanuel (1997) in which
the inner-core spin-up appears to be orchestrated by
the boundary layer. The veracity of these results would
indicate that the boundary layer is a fundamental aspect
of the spin-up of the inner core of a tropical cyclone,
at least in the context of axisymmetric dynamics.

7. Conclusions

We have studied aspects of the boundary-layer dynamics
and thermodynamics of a hurricane in the context of a
slab model. The principal findings are summarized below.

• The development of supergradient winds in the bound-
ary layer is a ubiquitous feature of the solutions.

• The solutions show a bifurcation in behaviour in the
inner core of the vortex at a particular boundary-layer
depth.

• For depths smaller than the bifurcation depth, the wind
in the boundary layer becomes strongly supergradient,
leading to a rapid deceleration of the inflow. As a
result, the inflow becomes zero at some radius near
the radius of maximum tangential wind speed above
the boundary layer. At this radius the equations are
singular and, near it, boundary-layer theory is no longer
applicable.

• For depths larger than the bifurcation depth, the solu-
tions remain non-singular to within a few kilometres
of the rotation axis. Inside the radius of maximum
tangential wind speed above the boundary layer, the
tangential wind speed in the boundary layer oscil-
lates about that above the layer, becoming alternately
supergradient and subgradient. These oscillations are
accompanied by oscillations in the radial wind speed
in the layer and in the vertical flow at the top of it.
Reasons for the oscillations are given, but the oscilla-
tions are probably not realistic, being most likely an
artifact of prescribing the radial pressure gradient at
the top of the boundary layer where the air ascends
out of it.

• The bifurcation depth increases, inter alia, with the
maximum tangential wind speed above the boundary
layer and with a decreasing mass flux of shallow
convection. In essence, the downward mixing of (zero)
radial momentum by shallow convection reduces the
inflow and together with the downward mixing of
tangential momentum reduces the supergradient wind
strength in the boundary layer.

• An increase of the surface drag coefficient has a similar
effect on the solutions to a decrease in the boundary-
layer depth.

• When the boundary-layer depth is taken to vary
inversely with the square root of the inertial parameter,
the vertical velocities at the top of the layer are more
comparable with those in other studies.

• Thermodynamic quantities are less sensitive to the
varying depth.

• A simplified approximate system of the dynamical
equations in which the mean vertical velocity at the

top of the boundary layer is set equal to zero in the
momentum equations and is simply diagnosed using
the continuity equation is reasonably accurate.

• Notwithstanding the inclusion of an improved algo-
rithm for calculating the radiative–convective equilib-
rium state of the boundary layer at some large radius,
as well as correcting the Runge–Kutta routine, the
solutions for the thermodynamic variables obtained in
the new calculations are qualitatively similar to those
obtained by S03. Moreover, the radial variation of ther-
modynamical quantities has a relatively weak depen-
dence on the boundary-layer depth.

• Predicted values of the equivalent potential temper-
ature are in acceptable agreement with observations
made in category-five hurricane Isabel (2003) for a
suitably intense vortex.

• There is a potential inconsistency in hurricane
boundary-layer models that require the flow out of
the boundary layer to have zero radial motion and a
prescribed, balanced, tangential wind speed. This limi-
tation applies to many previous studies of the boundary
layer that we are aware of and is the subject of further
study. We argued that this restriction is a less severe
in slab models than in models that allow for vertical
structure.

• The solutions for thermodynamic quantities suggest
that heat and moisture fluxes at the top of the boundary
layer are comparable in magnitude with those at the
sea surface. While there have been recent attempts to
improve measurements of the surface fluxes at high
wind speeds, our calculations point to an urgent need
for field measurements of the fluxes at the top of the
boundary layer.
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Appendix A

Let the boundary-layer depth, δ(r), be a specified func-
tion of radius r and define

φb = 1

δ

∫ δ(r)

0
φ dz (13)
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to be the vertical average of any quantity φ(r, z) across
the boundary layer. Then

dφb

dr
= 1

δ

∫ δ(r)

0

dφ

dr
dz − 1

δ

dδ

dr
(φb − φδ+), (14)

where φδ+ is the value of φ just above the boundary layer.
Applying this equation to ub, the continuity equation
(1/r)(∂ru/∂r) + ∂w/∂z = 0 gives

wδ = −1

r

d

dr
(rubδ). (15)

Equations (1)–(3) do not change in the variable-depth
case, but the value of wδ must be evaluated using
Equation (15). As a result, the expression (5) for wδ

contains the additional term −ubdδ/dr on the right-hand
side, but it turns out that the contribution of this term is
small.

Appendix B

The linearized form of the boundary-layer equations are

−ξv′
b = −CD

δ
(u2

b + v2
b)

1/2ub, (16)

ζaub = −CD

δ
(u2

b + v2
b)

1/2vb, (17)

where v′
b = vb − vgr, ξ = 2vgr/r + f and ζa = (1/r)

(drvgr/dr) + f . Let u = ub/vgr, v = vb/vgr, b = ξ/ζa

and c = ζaδ/CDvgr. Then (16) and (17) become

−bc(v − 1) = −(u2 + v2)1/2u, (18)

cu = −(u2 + v2)1/2v. (19)

Dividing (18) by (19) leads to the relation

u2 = bv(1 − v). (20)

Then squaring (18) and eliminating u gives an algebraic
equation for v, which may be written as

v2{b(1 − v) + v} − bc2(1 − v) = 0. (21)

Equation (21) may be solved iteratively using a New-
ton–Rapheson algorithm. If the boundary-layer depth δ

is prescribed as a function of radius as in section 4.5, the
vertical velocity at the top of the layer can be obtained
from the continuity equation (15).
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