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SUMMARY

We examine the difference between the evolution of a hurricane-like vortex in an axisymmetric model and
that of an intertropical convergence-zone- like disturbance in a slab-symmetric model, starting from an initial
disturbance with the same lateral structure. The main calculations are carried out using a hurricane model similar
to that formulated by DeMaria and Pickle (1988), supplemented by a few calculations using a recently developed
model by Nguyen et al. (2002). We show that, although the two � ow con� gurations have many similarities,
the slab-symmetric model does not provide a dynamical surrogate for the hurricane. The main difference can
be attributed to a geometrical factor in the formula for the conservation of absolute angular momentum in the
axisymmetric model, which for an inward-moving air parcel permits much larger tangential wind speeds to be
attained than in the slab-symmetric model. As a result, the sea-surface latent-heat � ux, which is wind-speed
dependent, is much larger in the axisymmetric model, providing a larger energy supply to the growing disturbance
per unit area than in the slab-symmetric case. A further geometrical effect is that for the same in� ow velocity
pro� le in the boundary layer, there is larger convergence in the axisymmetric model. Because this convergence
determines the deep cumulus mass � ux in the DeMaria and Pickle model, the cumulus heating is larger in
the axisymmetric con� guration. The non-development of the slab-symmetric perturbation is a feature also of
calculations using the Nguyen et al. (2002) model, even though two of the closures on the deep-cumulus mass
� ux used do not depend on the mass convergence in the boundary layer. A few numerical details of the main model
are described, including the method of solution, which differs from that used by DeMaria and Pickle (1988).
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1. INTRODUCTION

In a classical but now controversial paper, Charney and Eliassen (1964) proposed a
mechanism for tropical-cyclone intensi� cation which they called conditional instability
of the second kind (CISK). The mechanism involved a representation of deep cumulus
clouds in which the latent heating is proportional to the low-level moisture convergence
in the boundary layer. The basic idea is that increased boundary-layer convergence leads
to increased cumulus heating, which in turn leads to increased buoyancy in the vortex.
The increased buoyancy leads to enhanced convergence, which in turn increases the
vortex strength leading to increased boundary-layer convergence, and so on. Ooyama
(1982) stressed that the buoyancy-induced convergence must occur above the boundary
layer for vortex intensi� cation. In a subsequent paper to that with Eliassen, Charney
(1973) presented a two-dimensional, slab-symmetric version of the model, which might
be conceived as a model for the intertropical convergence zone (ITCZ). Over the years
there has been an enormous amount of literature on the CISK mechanism and at times
it has come under heavy criticism (for recent reviews see Emanuel et al. 1994; Ooyama
1997; Smith 1997). However, irrespective of the particular parametrization scheme used,
it is pertinent to ask to what extent the axisymmetric and slab-symmetric paradigms are
dynamically equivalent. Is the fact that zonally aligned horizontal shear layers such
as the ITCZ are not observed to have the intensity of tropical cyclones an indication
that they would be unstable to three-dimensional perturbations (possibly leading to
tropical-cyclone formation), or is there a difference in the maximum possible intensity
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of such systems on account of the difference in geometry? If the latter were not the
case, one might be able to use the slab-symmetric model as a dynamical surrogate for
exploring at least some aspects of tropical cyclones with a consequent simpli� cation
of the mathematics. We explore this question here using a slightly modi� ed form of
the axisymmetric hurricane model formulated by DeMaria and Pickle (1988, henceforth
referred to as DP88) and its slab-symmetric equivalent as a basis. We refer to this as
model-1. The DP88 model is based on the model formulated by Ooyama (1969), but the
governing equations for a compressible � uid are discretized vertically by three layers of
air with uniform potential temperature instead of three homogeneous layers of uniform
density as used by Ooyama. This change facilitates the representation of thermodynamic
processes.

A limitation of the convection scheme used in the Ooyama model is the closure on
the deep-cumulus mass � ux, which is set proportional to the rate of mass convergence
in the boundary layer. For this reason we have carried out similar calculations to those
above using the minimal axisymmetric hurricane model recently developed by Nguyen
et al. (2002) and its slab-symmetric counterpart. This model, which we refer to as
model-2, has three layers also, but is formulated in ¾ -coordinates and has a fully
integrated representation of moist processes. In particular, it has a mass-� ux scheme
to parametrize deep cumulus convection and the option to use one of three different
closures for the deep-cumulus mass � ux. In two of these closures, the one suggested
by Arakawa (1969) and the other used by Emanuel (1995), the cloud-base mass � ux
is determined independently of the mass convergence in the boundary layer, while the
third is similar to the one suggested by Ooyama and that used in model-1.

2. THE NUMERICAL MODEL

Model-1 consists of three layers of air of uniform potential temperature, the lowest
layer (layer-1) is the surface boundary layer and the uppermost layer (layer-3) the
out� ow layer. The con� guration is shown in Fig. 1. The formulation differs only
slightly from that used by DP88 (see below), but the solution method is based on
� nite differences rather than the spectral method. Prognostic equations are solved for
the radial and tangential wind components averaged over the depths of each layer and
for the depths of these layers. The governing equations, Eqs. (2.36)–(2.38) of DP88, are
similar to those derived by Ooyama (1969), but there is an extra term in the pressure-
gradient force, and the rate of change of boundary-layer thickness is calculated from
.@h1=@t/ D ¡u1.@h1=@r/, because other terms in Eq. (2.38) of DP88 are zero or cancel.
Here h1 is the deviation of the boundary-layer thickness from its initial value H1, u1 is
the radial wind component in the boundary layer, r is the radius and t the time. If h1 were
initially constant, the boundary-layer thickness would remain constant. Some minor
changes to the original DP88 model formulation are adopted from Shapiro (1992); in
particular, the surface drag coef� cient, CD, and evaporation coef� cient, CE, are taken to
be equal and a function of the wind speed in layer-1. Other changes are detailed in the
appendix.

No sensible-heat � ux from the surface is allowed in an isentropic model, whereupon
the Montgomery stream function in the boundary layer must be evaluated according
to M1 D µ1¼1=2 (recall that M and µ are uniform in the vertical within a layer) and
not from M1 D cpTs. Here µ1 is the potential temperature in layer-1, ¼ is the Exner
function, de� ned by .p=p¤/· , where p is the pressure and p¤ = 1000 mb, cp is the
speci� c heat capacity of air at constant pressure and Ts is the sea surface temperature.
The subscript 1=2 refers to the interface level where the variable is stored, see Fig. 1.
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Figure 1. The vertical structure and representation of deep convection in the isentropic model. Deep convection
(indicated by the cloud outline) occurs in vertical grid columns (delineated by vertical dashed lines) where there
is convective instability (´ > 1) and where there is boundary-layer convergence (indicated by convergent arrows).
In such columns, for each unit of mass that ascends from the boundary layer to the middle layer, ´ ¡ 1 units are
entrained from the middle layer and ´ units enter the top layer. For columns with boundary-layer divergence there
is a mass � ux proportional to Q¡

3=2 from layer-2 into layer-1. Boundary-layer convergence in regions where ´ < 1
leads to a mass � ux into the middle layer at a rate proportional to QC

3=2.

The value M1 D µ1¼1=2 is used also for the calculation of the moist static energy in
the boundary layer, 31 D M1 C Lq1, and not the procedure proposed by DP88 in their
Eq. (3.16). Here q1 is the water-vapour mixing ratio in the boundary layer and L is the
latent heat of vapourization.

The representation of deep convection is also illustrated in Fig. 1. Deep convection
occurs where there is convective instability, i.e. where 31 exceeds the saturation moist
static energy in the upper layer, 3¤

3, and where there is boundary-layer convergence.
In such columns, for each unit of mass that ascends from the boundary layer to the
middle layer, ´ ¡ 1 units are entrained from the middle layer and ´ units enter the top
layer. The amount of entrainment (´ ¡ 1) is proportional to the degree of convective
instability in a column¤, i.e. to (31 ¡ 3¤

3/. Mass transfer from the middle layer to the
upper layer leads to a thickening of the upper layer and a thinning of the middle layer and
is analogous to buoyancy production in a model formulated in height coordinates. In our
formulation, deep convection is not allowed for ´ < 1. In such regions there is a mass
� ux from the boundary layer and the middle layer proportional to the diabatic heating
rate, QC

3=2, at the interface 3=2, and a mass � ux in the other direction proportional to the
diabatic cooling rate, Q¡

3=2, at this level. Other aspects of the model are described in the
appendix.

The two-dimensional, slab-symmetric version of the model is obtained by replacing
the radial coordinate, r , by the lateral coordinate, x , and derivative terms of the form
.1=r/.@ =@r/ by @ =@x , where is any dependent variable. In the azimuthal- and
radial-momentum equations the centrifugal acceleration term and its counterpart are
omitted also.

3. THE CALCULATIONS

The radial pro� le of the initial vortex is that used by Smith et al. (1990) with a
maximum tangential wind speed of 15 m s¡1 at a radius of 100 km. The formula is

¤ Actually ´ D 1 C .31 ¡ 3¤
3/=.3¤

3 ¡ 32/.
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Figure 2. Time–radial plots showing vortex evolution in the axisymmetric case. (a) Isotachs of azimuthal wind
speed. Contour interval is 5 m s¡1 with values larger than 35 m s¡1 shaded. (b) Isotachs of QC

3=2 , which is
proportional to the mass � ux from the boundary layer to the middle layer. Contour interval is 0.05 m s¡1 with
values larger than 0.3 m s¡1 shaded. (c) Isopleths of moisture � ux from the ocean. Contour interval is 2 g kg¡1d¡1

with values larger than 30 g kg¡1d¡1 shaded. (d) Isopleths of the convection parameter, ´. Contour interval is 0.1
units with values larger than 1.4 shaded. The degree of convective instability is proportional to ´ ¡ 1.

given in the appendix. We carried out two calculations differing only in that one is
axisymmetric and the other slab symmetric. The axisymmetric version is initialized with
the radial-wind pro� le in gradient wind balance, whereas the slab-symmetric version is
initialized with the same lateral tangential-wind pro� le in geostrophic balance.

4. RESULTS

Figure 2 shows time–radius plots of the isotachs of azimuthal wind speed in
the middle layer and of the vertical velocity at the top of the boundary layer, as
well as the isopleths of surface moisture � ux and ´ for the axisymmetric calculation.
The corresponding plots for the slab-symmetric calculation are shown in Fig. 3.
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Figure 3. Analogous plots to those in Fig. 2 for the slab-symmetric case. (a) Isotachs of azimuthal (along the
intertropical convergence zone) wind speed. Contour interval is 1 m s¡1 with values larger than 10 m s¡1 shaded.
(b) Isotachs of QC

3=2. Contour interval is 0.01 m s¡1 with values larger than 0.06 m s¡1 shaded. (c) Isopleths
of moisture � ux from the ocean. Contour interval is 2 g kg¡1d¡1 with values larger than 14 g kg¡1d¡1 shaded.
(d) Isopleths of the convection parameter, ´. Contour interval is 0.1 units with values larger than 1.4 shaded. The

degree of convective instability is proportional to ´ ¡ 1.

(a) Time evolution in the axisymmetric case
The isotachs of azimuthal wind (Fig. 2(a)) show that the vortex steadily strengthens,

reaching its maximum intensity of more than 45 m s¡1 after 4 days, during which time
the radius of maximum winds contracts from 100 km to about 30 km. Beyond 4 days the
vortex slowly broadens and the azimuthal wind speed gradually decays. The strength-
ening of the vortex is accompanied by increased boundary-layer convergence, which
is manifested in an increased mass � ux through the top of the layer, proportional to
QC

3=2 (Fig. 2(b)). The increasing boundary-layer wind speeds lead to an increase in the
moisture � ux from the ocean (Fig. 2(c)), which in turn raises the degree of convective
instability, characterized by the magnitude of ´ (Fig. 2(d)). At the initial time ´ has a
magnitude of 1.4. As the vortex matures, the mass transport from the middle layer to the
top layer, which is proportional to ´QC

3=2, causes the top layer to deepen at the expense
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of the middle layer. This corresponds with a stabilization of the � ow and the values of ´
progressively decline.

(b) Time evolution in the slab-symmetric case
The disturbance in the slab-symmetric con� guration intensi� es only very slightly

during the � rst 15 h and thereafter it steadily decays (Fig. 3(a)). The mass � ux out of
the boundary layer is much weaker in this case (cf. Figs. 2(b) and 3(b)) as is the surface
moisture � ux (cf. Figs. 2(c) and 3(c)). Despite the weaker surface � ux, the degree of
convective instability still increases at early times (cf. Figs. 2(d) and 3(d) and note that
the scales along the abscissa and ordinate are different), but because the convergence in
the boundary layer is weaker, the horizontal gradient of ´ is less than in the axisymmetric
case. In turn, the weaker gradient of ´ is analogous to a weaker gradient of convective
heating, which acting alone would lead to a weaker vertical circulation than in the
axisymmetric case. The vertical circulation is necessary for the intensi� cation of the
disturbance.

(c) Intermediate cases
Two geometrical factors, the conservation of absolute angular momentum rather

than linear momentum, and the axisymmetric form of the boundary-layer convergence
to evaluate the mass transport rather than the Cartesian form, appear to explain the
differences in the evolution. To investigate the separate importance of each contribution,
we performed further experiments as follows. The nonlinear terms of the axisymmetric
version of DP88 (Eqs. (2.36) and (2.37)) can be written in the form

@uj

@t
C uj

@uj
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¡ ±u

v2
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r
¡ f vj D ¡
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where uj ; vj , are the radial and azimuthal wind components in layer-j , .@Áj =@r/ C 8j

is the radial pressure gradient, and Frj and F j̧ are the frictional terms in the radial and
azimuthal directions. The quantities ±u and ±v are switches: when ±u D 1 and ±v D 1, we
recover the original equations of DP88; when ±u D 0 and ±v D 0, the nonlinear terms are
those of the slab-symmetric version. Similarly, Eq. (3.3) of DP88, the mass continuity
equation, is

Q¡
3=2 ¡ QC

3=2 D .H1 C h1/

³
@u1

@r
C ±conv

u1

r

´
(3)

when ±conv D 1. When ±conv D 0 we obtain the slab-symmetric version.

(d ) Angular-momentum versus linear-momentum conservation
In the � rst intermediate case, we investigate the importance of angular-momentum

conservation for the intensi� cation, by setting both ±u and ±v equal to zero¤, but keeping
±conv D 1. In this case the vortex does not intensify. The time–radius plots resemble
the slab case, even though terms on the right-hand side of Eqs. (1) and (2) have
their axisymmetric form. We do not show the results of this case. As an intermediate
calculation we show in Fig. 4(a) the evolution of the azimuthal wind for the case

¤ Examination of the kinetic-energy equation formed from Eqs. (1) and (2), shows that unless ±u D ±v , the
formulation would lead to spurious energy sources in the system.
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Figure 4. Isotachs of azimuthal wind speed for two intermediate cases: (a) ±u D 0:5, ±v D 0:5 and ±conv D 1;
(b) ±u D 1, ±v D 1 and ±conv D 0:85. Contour interval is 2 m s¡1 with values larger than 20 m s¡1 shaded.

±u D ±v D 0:5. There is clearly less intensi� cation than in the axisymmetric case, but
the plot shows a greater resemblance to that case (cf. Fig. 2(a)) than to that for the
slab-symmetric case. As expected, as ±u and ±v are increased beyond 0.5, the solution
approaches that for the axisymmetric case.

(e) Axisymmetric versus slab convergence
Setting ±conv D 0 with ±u D ±v D 1 is equivalent to using the convergence from a

slab boundary layer to calculate the QC
3=2. The vortex in the calculation with these values

does not intensify and even when ±conv is increased to 0.5, there is only slight intensi� -
cation. In contrast, signi� cant intensi� cation occurs when ±conv D 0:85 (see Fig. 4(b)),
suggesting that vortex intensi� cation in the calculations using the representation of
convection in model-1 is sensitive to the precise amount of convective heating.

( f ) Model-2 and other convection schemes
A limitation of the foregoing calculations is the use of a convection scheme in

which the rate of convective heating is tied to mass convergence in the boundary layer.
Therefore, as shown above, the geometrical differences between the axisymmetric and
slab-symmetric versions of the model lead to a difference in the rate of convective
heating as well as the different surface wind speed resulting from angular-momentum
conservation. To check that the larger rate of convective heating in the axisymmetric
model is not the decisive factor leading to development in the axisymmetric model,
we carried out additional calculations using model-2, using a range of closures on the
cloud-base mass � ux of deep convection. Figure 5 summarizes the results of the six
experiments using the new model, three using the axisymmetric version with one of
the closures for deep convection, and three using the slab-symmetric version with each
closure. The calculations assume the same initial vortex as before and the initial thermal
and moisture structure is the same as that used by Nguyen et al. (2002), which is slightly
stable to deep convection at the initial instant. The � gure shows the maximum wind
speed in the boundary layer in each calculation as a function of time. As in the earlier
calculations, the vortices in the axisymmetric calculations all grow, while those in the
slab-symmetric case do not show any sustained development. It is interesting to note
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Figure 5. Maximum azimuthal/transverse wind speed in (a) an axisymmetric and (b) a slab-symmetric version of
the minimal three-level model of Nguyen et al. (2002). The symbols A, E and O mark the curves for the modi� ed

forms of Arakawa, Emanuel and Ooyama closures for deep-convection parametrizations.

that with the Ooyama scheme, the period of rapid development occurs earlier in the
axisymmetric case compared with the other two schemes, suggesting that, at least for
the parameters chosen, this scheme produces the maximum convective heating.

(g) Stronger initial disturbance in the slab-symmetric case
One might ask whether the disturbance in the slab-symmetric case could grow if

the initial disturbance were suf� ciently large. To answer this question we carried out
additional calculations with the slab-symmetric versions of both models, the results
of which are summarized in Fig. 6. Panel (a) of this � gure shows time series of the
maximum tangential wind speed in layer-2 for six calculations using model-1. These
include the standard calculation described in section 4(b), two calculations in which the
strength of the initial vortex was increased to 25 m s¡1 or 35 m s¡1, and three more
in which the radius of maximum tangential wind speed was increased from 100 km to
150 km. Panel (b) of Fig. 6 shows the corresponding calculations using model-2 with
the Arakawa scheme for convection. In all these calculations, following a brief period
of transient growth, all the disturbances decay. Thus, it does not appear possible for
the two-dimensional disturbance to grow spontaneously, even from a relatively (and
possibly unrealistically) strong initial perturbation.
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Figure 6. Time series of the maximum tangential wind speed in layer-2 for six calculations using the slab-
symmetric version of each model with an initial vortex strength of 15, 25, or 35 m s¡1, and an initial radius of
maximum tangential wind speed (rmax) of either 100 km (solid curves) or 150 km (dashed curves): (a) model-1,

(b) model-2 with the Arakawa scheme for convection.

5. DISCUSSION

We attribute the quantitative differences between the axisymmetric and slab-
symmetric calculations to two geometrical effects: the � rst associated with the conserva-
tion of absolute angular momentum, and the second associated with the boundary-layer
convergence.

In the axisymmetric model, the absolute angular momentum is de� ned by rv C
.f r2=2/, while in the slab-symmetric model it is de� ned by v C .f x=2/. Thus, an
air parcel in the axisymmetric model which arrives at radius r from a larger ra-
dius r0, conserving its angular momentum, will have a tangential velocity v D fv0 C
.f r0=2/g.r0=r/ ¡ .f r=2/, where v0 D v.r0/, whereas an equivalent air parcel in the
slab-symmetric model will have a transverse velocity v D fv0 C .f x0=2/g ¡ .f x=2/.
The factor r0=r in the axisymmetric model implies that a much larger wind speed can
be attained as r decreases than in the slab-symmetric model as jxj decreases. As a
result, much larger surface � uxes of latent heat are possible in the former case. This
is con� rmed by a comparison of the evolution of the surface heat � ux as a function
of r or x and time in the two models shown in Figs. 2(c) and 3(c). The pattern of the
moisture � ux in the slab-symmetric case re� ects the distribution of u (not shown), as
the transverse component v has less structure. The increased moisture � ux elevates the
degree of deep convective instability as characterized by the parameter ´.
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Figure 7. Convergence in the axisymmetric (.1=r/ d.ur/=dr) and slab-symmetric (du=dx) versions of the model
for an idealized radial in� ow (u) pro� le. Units are non-dimensional.

The importance of the (1=r)-type dependence of v implied by angular-momentum
conservation for development in the axisymmetric case is highlighted by the calculation
where the slab-symmetric conservation law is used in the axisymmetric model (see
subsection 4(d) above). In this extreme calculation, development does not occur, but
it begins as the terms involving ±u and ±v in Eqs. (1) and (2) are progressively increased.

The second effect of differing geometry is that, for the same radial/lateral pro� le
of boundary-layer in� ow, the convergence in the axisymmetric case, .1=r/ d.ru/=dr ,
is about twice as large as in the slab-symmetric case, du=dx , on account of the
additional term 1=r . This difference is indicated in Fig. 7 for a representative in� ow
pro� le. The larger convergence means that for the convergence-based closure on deep
convection used in the model, the rate of cumulus heating would be approximately twice
as large in the axisymmetric case, even if the in� ow pro� le and the distribution of ´
were the same. In fact, the in� ow is larger in the axisymmetric case, as are the values of
´, because of the increased surface � uxes of latent heat. Thus both effects combine to
produce a much stronger disturbance than in the slab-symmetric case. It is clear from the
intermediate case discussed in subsection 4(e) that the foregoing geometrical factors are
not independent when using the convective parametrization scheme of model-1. Indeed
the amount of convective heating required for development in the axisymmetric case is
not signi� cantly less than that present in the calculation of subsection 4(a).

Calculations using model-2 show that, even in cases where the deep convective
mass � ux is not coupled with the convergence, development does not occur in the slab-
symmetric case. Except for the fact that there is a brief period of weak development
using the Ooyama scheme in the slab-symmetric version of model-2, the calculations
using this model support the results obtained using model-1.

6. CONCLUSIONS

We have shown that there are important quantitative differences between the evolu-
tion of a hurricane-like disturbance in an axisymmetric model and that of a disturbance
with a similar initial structure in the corresponding slab-symmetric model. Because of a
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geometrical factor, conservation of absolute angular momentum for inward-moving air
in the axisymmetric model permits much larger tangential wind speeds to be obtained
than in the slab-symmetric model. As a result, the sea-surface latent-heat � ux, which is
wind-speed dependent, is much larger in the axisymmetric model, and provides a larger
energy supply to the storm per unit area.

In the axisymmetric version of the model, the boundary-layer convergence is much
stronger than in a slab-symmetric version and with a convergence-based closure on deep
convection, the deep convective heating is much stronger. Nevertheless, calculations
using non-convergence-based closures in model-2 show that this is not the overriding
effect in producing development in the axisymmetric case. It follows that the slab-
symmetric model in general does not provide a dynamically equivalent surrogate for
the corresponding axisymmetric con� guration and, therefore, for a hurricane.
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APPENDIX

The model formulation differs from that of DP88 as follows:

1. First we note that there are misprints in DP88 in Eq. (3.1). The term in paren-
theses should read: r.@=@r/. In Eq. (2.31) the overbar must be switched: .Sj ¡ Sj / and
in Eq. (3.12) the factor in front of the second term on the right-hand side must read:
M3 ¡ M2=P3=2 ¡ P7=2.

2. The proportionality constant ´ is calculated as in DP88 Eq. (3.11), but the moist
static energy in layer-1 is

31 D M1 C Lq1: (A.1)

3. Following Shapiro (1992), the drag coef� cient for the surface momentum � ux is
taken to be

CD D .1:024 C 0:05366RF juj/ £ 10¡3 (A.2)

where RF D 0:8 is a wind-speed reduction factor. Here we set CE D CD.
4. We use the same horizontal diffusivity ¸ D 1000 m2s¡1, and vertical diffusivity,

¹ D 5:0 £ 10¡5 m2s¡1, as DP88. A bi-harmonic � lter term is chosen with coef� cient
¸4 D 4:63 £ 1010 m4s¡1, which corresponds to a damping time of 60 h.

5. An attempt to reproduce the DP88 control simulation (their Fig. 2) showed some
sensitivity to details of the numerical scheme. The scheme used is described brie� y
below.

The solution method uses � nite differences. Although the accuracy of � nite dif-
ferences is less than that of spectral methods using standard schemes, the method is
more versatile and the desired accuracy can be achieved by increasing the resolution.
Another advantage is the subdivision into � nite volumes with an appropriate choice of
staggering. The radial and tangential wind components, u and v, are calculated at regular
radial locations starting at r D 0, where u D 0 and v D 0. All other quantities including
the ‘Q’s are calculated at intermediate locations. In the experiments shown, we use 100
grid points with intervals 1r D 10 km. This represents a higher resolution than used
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by DP88 and enables the vortex ‘eye’ region (the region of subsidence surrounding the
axis) to be better resolved.

For time integration we adopted the standard Adams–Bashforth third-order method.
The � nite differencing has a substantial impact on the results. Most crucial is the
method for evaluating the divergence in layer-1. The only method which was found
to have a stable behaviour was when the divergence was calculated from its immediate
neighbours: ³

1

r

@

@r
.ru1/

´

iC1=2
D

1

riC1=2

riC1uiC1 ¡ riui

1r
: (A.3)

We have investigated various ways to evaluate the advection terms, among them a
fourth-order accurate advection scheme and the � ux form of Eqs. (2.36)–(2.38). How-
ever, the hoped for superiority was not obtained when the additional terms involving the
‘Q’s were included.

We found a somewhat slower development of the vortex than reported in DP88
if all parameters, including the domain size and resolution, are the same as in DP88.
All parameter dependencies are qualitatively the same as reported by DP88. We obtained
the best quantitative agreement using 64 intervals for the control experiment, whereas
DP88 use a Bessel series truncated at N D 32. This con� rms the general rule that n
spectral modes are ‘worth’ 2n grid points.

There is a difference in the rate of vortex evolution depending upon whether
convective instability is allowed to accumulate, or whether it is rapidly removed. The
time-scale for the convective adjustment to occur in the present model is simply the time
step, rather than a speci� ed time-scale for convection. Taking a � ner resolution requires
a smaller time step, which speeds up vortex development. A primary factor governing
the evolution of the initial vortex to hurricane strength is the horizontal resolution.

6. We use a third-order upstream advection scheme. This scheme is not positive
de� nite like the standard upstream method, although oscillations are weak compared
with centred schemes, and amplitudes are comparable to them. The bene� cial effect of
the bi-harmonic damping term is in � ltering out such oscillations.

7. The initial vortex pro� le is given by the function of s D r=rmax or s D x=xmax:

v D 1:7880321vmax
f1 C 3a.Âs2/2gs

f1 C .Âs2/2 C a.Âs2/3g2
; (A.4)

where r or x measure distance from the axis and vmax D 15 m s¡1, rmax D xmax D
100 km, Â D 0:3398057, and a D 0:0137047.

8. The treatment of the outer boundary for the radial velocity component u requires
care. Gravity waves may travel far outward with little loss in amplitude and be re� ected
at the outer boundary, eventually triggering sporadic deep convection. This may be a
problem unless the domain size is very large. Here we implement a radiation boundary
condition suggested by Miller and Thorpe (1981). A further improvement is to include
a damping term in the right-hand side of the tendency equation for uj , and vj .

@

@t
uj D : : : ¡duj

@

@t
vj D : : : ¡dvj ; (A.5)

where the damping term d.r/ D dmax.1=2/[1 C cosf¼.r ¡ rd/=.rb ¡ rd/g] when r ¸ rd,
where rb is the maximum radius in the model, and rd is the radius where damping
starts to become active. In the calculations we used dmax D 1=¿ , ¿ D 1h, rd D .3=4/rb.
The damping terms reduce the activity of the � ux terms at large radii. We assume that
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the equations for uj reduce to an advection equation with advection speed c and a
damping term of the form

@

@t
u C c

@

@r
u D ¡du: (A.6)

The Miller–Thorpe procedure is not suitable for v because this component is tangential
to the boundary. Instead we include the foregoing damping term, so that the equation to
be solved instead of Eq. (2.37) is

@

@t
vj C f uj D ¡dvj : (A.7)

The layer thickness at the outer boundary is obtained on the assumption of geostrophic
balance based on DP88 Eq. (2.36) and ignoring the small term 8j therein. We found that
a zero-gradient condition for the boundary-layer mixing ratio, q1, at the outer boundary
condition was adequate.
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