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On the symmetric circulation of a moving hurricane
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SUMMARY

The evolution of the symmetric circulation of 2 moving hurricane-scale vortex on a beta-plane is investigated
and interpretations of this investigation are given in terms of vorticity fluxes. The study, which is fundamental
to understanding vortex motion, is based largely on numerical integrations of the barotropic vorticity equation,
using a finite-difference method, In the absence of any large-scale flow, the north-westward drift of an initially
symmetric, cyclonic vortex in the northern hemisphere is accompanied by a decrease in the tangential circulation
at most radii, and a consequent deceleration of the azimuthally averaged tangential velocity. This behaviour is not
simply a consequence of the increase in the Coriolis parameter over the domain of the cyclone as is often supposed,
but may be explained as the sum of three effects: the outwards radial flux of relative vorticity associated with the
asymmetric component of flow, the corresponding flux of planetary vorticity, and the rate of change in planetary
vorticity due to the meridional displacement of the vortex. In particular, the net rate of chanpe in absolute vorticity,
the sum of the last two effects, makes the largest contribution to the circulation changes. The flux of absolufe
vorticity is associated, inter alia, with the generation of Rossby waves by the vortex. The behaviour is different
from that in recent calculations by Carr and Williams in which the flux of planetary vorticity was omitted.

It is pointed out that in the analytic theory for vortex motion developed by the first author and co-workers, an
initially symmetric vortex with zero net relative circulation at large radial distances subsequently develops a finite
negative relative circulation whose strength increases linearly with time; this is because the net flux of planetary
vorticity at large radial distances is finite. In contrast, in the numerical model the flux is close to zero so that the
symmetric circulation decays more rapidly with radius than the 1/{radius) decay rate in the analytic model, At
inner radii there is good qualitative agreement between the predictions of the two methods, even though there are
quantitative differences between them. It is noted that the occurrence of the finite circulation in the analvtic theory
violates a theorem of Flierl f al. and that it represents a limitation of the long-term validity of the theory.

Kryworps: Barotropic Hurricane Modelling  Vorticity

1. INTRODUUTION

In recent years there have been a number of studies of the motion of a barotropic vortex on a beta-
plane because of the perceived relevance of this problem to tropical-cyclone motion (see, for example,
Smith (1993} and references). The basic thought experiment is concerned with the subsequent motionof an
initially symmetric vortex in the absence of any large-scale environmental flow. Most studies have assumed
the flow to be nondivergent, notable exceptions being those of Shapiro and Ooyama (1990) and Evans et
al. {1991). However, Shapiro and Qoyama op. cit. showed that for realistic tropical-cyclone-scale vortices,
divergence effects are negligible in the shallow-water model. In broad terms, the subsequent behaviour
of the flow is well understood. Consider the isolines of absolute vorticity in the initial state as depicted
in Fig. 1. These are approximately circular in the inner-core region and lie approximately parallel to
latitude circles at large distances from the vortex centre. Since absolute vorticity is materially conserved
in the nondivergent model, the pattern of isolines is distorted by the vortex circulation, leading to an
approximately east—west oriented dipole anomaly in the relative vorticity at early fimes. Subsequently, the
asymmetry rotates cyclonically and increases in strength and scale (Smith ef al. 1990, henceforth referred
to as SUD; Shapiro and Ooyama 1990). The asymmetric flow associated with this vorticity asymmetry
can be regarded as a secondary flow which advects the symmetric vortex, causing it to track towards the
north-west (south-west) in the northern (southern) hemisphere.

Numerical calculations have shown that as the vorfex moves polewards, the symmetric circulation
becomes progressively more anticyclonic, especially at outer radii (¢.g. Fiorino and Elsberry 1989, Fig. 6)
and this has been supposed to be ©. . . a consequence of conservation of absolute vorticity” by Fiorino and
Elsberry op. cit. or a consequence of *. . . conservation of angular momentum in the poleward moving
vortex” by Evans ef al. (1991), The former argument is presumably that the general increase in planetary
vorticity encompassed by the vortex circulation is accompanied by a commensurate decrease in relative
vorticity. The Evans et al. argument begs a number of questions because it refers to a conversion of vortex
angular momentum about the vortex axis into earth angular momentum which is about another axis. Such
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Figure 1. Absolute-vorticity contours for the broad vortex used by Smith e af, (1990) when initialized at the origin
of a beta-plane centred at latitude 20°N in the absence of any large-scale flow. Contour interval is 1.0 x 10~ %51,

conversions involve torques, and angular momentum is not conserved. An alternative interpretation is
given here in terms of vorticity fluxes.

Because of the relative importance of the outer circulation of a vortex on vortex motion (Fiorino
and Elsberry 1989), the change in the symmetric circulation will feed back on the vorticity asymmetry
and, therefore, it may have a significant effect on the long-term motion of the vortex. For this reason an
understanding of the factors that determine the evolution of the symmetric circulation of a moving vortex
are fundamental to understanding vortex motion itself. Some information on this question is provided by
the analytic investigations of vortex stability to perturbations from axisymmetry by Carr and Williams
(1989), by the numerical study of Shapiro and Ooyama (1990), and by the analytic theory of vortex motion
developed in a series of papers by Smith and Ulrich (1990}, Smith (1991, henceforth referred to as §91),
Smith and Weber (1993) and Kraus et al. (1994, personal communication). We review the salient results
of these studies and show that they raise other issues which we address in this note,

Carr and Williams (1989) calculated the change in symmetric wind speed with time as a function of
radius and attributed this to *. . . a convergence of momentum flux associated with the 8-induced asym-
metry’, They used a Rankine vortex (tangential velocity inversely proportional to radius) and considered
only an annular region between two finite radii at which the radial velocity was assumed to vanish. Ac-
cordingly, their basic vortex has zero relative vorticity everywhere in the annular domain, but has finite
circulation at the inner radius. They showed that the S-induced asymmetries lead to an acceleration of the
symmetric flow at inner radii, and to a deceleration thereof at outer radii. Moreover, the radius at which
the changeover occurred is an increasing function of time (see their Fig. 6).

Shapiro and Ooyama (1990) investigated the evolution of the total relative angular momentum (RAM)
in circular regions of different sizes (400 km, 1000 km and 3000 km} centred on the moving vortex, They
showed that, in the inner two circles, the total RAM decreased steadily with time to about 96 hours after
which it increased slightly in the 1000 km circle out to 120 hours (see their Fig. 7). However, in the
3000 km circle, the total RAM decreased sharply, became negative after about 32 hours, and reached a
minimum at about 70 hours. Thereafter it increased sharply, recovering about half of its initial (positive)
value by 120 hours. These large changes were shown to be associated with major changes in the integrated
Coriolis torque as the flow evolved and, in turn, these were attributed to the development of successive
anticyclonic and cyclonic gyres in the Rossby-wave wake induced by the vortex. However, Shapiro and
Ooyama did not investigate the evolution of the symmetric vortex circulation as a function of radius.
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A similar type of calculation to that of Carr and Williams op. cit. was carried out by Smith (1991,
see Fig. 4) in the context of an approximate analytic theory for the motion of a barotropic vortex on
a beta-plane. In this theory, the initial vortex is symmetric and spans the whole domain from r =0 to
infinity. Moreover, beyond the radius where it is 2 maximum, the tangential wind speed decays rapidly
with radius r, specifically faster than 1/r, whereupon the net relative circulation tends to zero as v —» o,
Thus, according to Stokes’s theorem, there is exactly as much positive vorticity as negative vorticity in
an areally integrated sense. In contrast to Carr and Williams’s calculation, the lowest-order correction to
the symmetric circulation is everywhere anticyclonic, in line with the arguments given above. However,
somewhat unexpectedly, the associated tangential velocity decays only like 1/7 for large r, much more
slowly indeed than the primary circulation. Therefore, as we shall show, there must be a finite and negative
vorticity flux associated with the asymumetric perturbation. A further implication is that, beyond a certain
radius, the correction to the symmetric flow exceeds the primary vortex flow, thereby invalidating the
perturbation method of solution at large radii. This does not appear to be a severe limitation of the theory,
at feast for a day or two, since, as shown by the foregoing authors, for this time period excellent agreement is
obtained between many predictions of the theory and corresponding results obtained from a full numerical
solution of the problem. Nevertheless, it is an aspect of the theory that merits further exploration, even
though the theory does not include the feedback effects associated with the changing circulation. This is
particularly the case because a symmetric vortex whose tangential velocity decays like 1/ in an infinite
domain has infinite kinetic energy and infinite relative angular momentum and even on a finite domain
may not provide a very good approximation to reality. The foregoing considerations suggest that it would
be of interest to know how the symmetric circulation behaves at large radii in the equivalent numerical
calculation for a moving vortex because, notwithstanding the possible influence of boundaries, this might
be regarded as the control calculation.

The primary purpose of the present note is to investigate the evolution of the symmetric circulation
in the numerical model for 2 moving vortex by SUD and to interpret this in terms of the vorticity budget.
A subsidiary aim is to compare with this the behaviour of the circulation that occurs in the analyhic model
of §91. In particular, we seek to identify the reason for the evolution of the finite relative circulation in
the analytic calculation.

2. VORTICITY BUDGET FOR A MOVING VORTEX

When expressed in a coordinate system moving with the centre of a vortex with velocity ¢, the
barotropic vorticity equation can be written in flux-form (see the appendix for its derivation) as

e+ )T +V-[Ug + f]=0 (1)

where U is the wind vector in this frame, £ = k+« V A U is the vertical component of relative vorticity, f
is the Coriolis parameter, k is the unit vector in the vertical and T is the time. Note that in ihe?,mf}ving
frame, f is a function of time as well as of the meridional coordinate ¥, 1e, f = fg + (Y + fa ¢y dT)
where fy and B are constants and ¢; = ¢ - §, j being the unit vector in the meridional direction.
Consider any closed circuit C enclosing a surface S, which is fixed in the moving frame. Then

9 R U -
Mj;;dsm fs'i?'{U(;+f)]dS SaTdS' (2)

Using Stokes’s theorem and the divergence theorem and noting that 8f/87T = Sc», where ¢ 15 spatially
uniform, this equation may be rewritten as

J ~
_é_f%(U.t)dz.=_§(gni-f)(i}-ﬂ)-dlmﬁch (3)
C &

where [ measures distance anticyclonically around C in the tangential direction t, fi is the cutward normal
direction on €, and A is the area of S, It follows that the rate of change of the relative circulation about
C, or equivalently the rate of change of total relative vorticity within C, is equal to the advective flux of
absolute vorticity into the circuit {first termn on the right-hand side of Eq. (3)) minus the rate of change of
planetary vorticity due to the meridional displacement of the circuit on the beta-plane (last term on the
right-hand side of Eq. (3)). Now let {r, 8) be polar coordinates with origin at the vortex cenire, and let
C be a circle of radius » centred at this point. We decompose any dependent variable into #s azimuthal
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average ¢ = (1/2m) fﬂzﬂ ¢ d¢ and a perturbation ¢’. Then df = r d6, T and fi become the unit vectors 0
and ¥ in polar coordinates, and A = mr?. Writing U = uf + vé, the azimuthal mean of Eq. (3) reduces to

0T/OT ==~/ — Briw sinf + Lez). (4)

If the Cartesian coordinates of ¢ in a fixed frame are (¢;, ¢2), then at large radial distances (r — o) the
radial flow associated with the vortex motion must be such that &’ —» —¢ - £, and the last term in brackets
in Eq. (4) should tend to zero.

3. EVOLUTION OF THE SYMMETRIC CIRCULATION

We now investigate the evolution of the symmetric circulation and, in particular, the relative vorticity
for a moving vortex in the numerical calcuiation of SUD. We examine also the extent to which this evolution
is captured by the analytic theorv. Because of the approximations made in the analytic theory, one might
expect the numerical calculation to be the most exact, provided that the grid resolution is adequate and
the computational domain is large enough. Inevitably, the presence of boundaries at a finile distance in
the numerical model will influence the calculated far-field behaviour of the circulation. To minimize this
influence we used a domain size of 5600 km x 5000 km, two and a half times that used by SUD. The grid
size was 10 km, one half of that used by SUD.

Figure 2 shows, inter alia, the radial profiles of azimuthally averaged perturbation relative vorticity
obtained from the numerical integration and from the analytic theory at 24 h intervals to 72 hours. Per-
turbation quantities are defined relative fo the initial symmetric profiles. We focus attention first on the
numerically calculated profiles. These show a relatively large negative perturbation in an inner core region
which expands radially with time as the mean perturbation amplitude mcreases. While the magnitude
fluctuates rapidly with radius in this region, the mean value is close to the value — By, where y, is the
poleward displacement of the vortex (this value is indicated in panels (a) to (c) mn Fig. 2 by a dashed
Hne}. Shapiro and Ooyama (1990, p. 181) show that this behaviour is associated with the homogenization
of the absolute vorticity in the inner core region and argue that it is °. . . a simple consequence of the
conservation of angular momentum’. However, it is clear from the structure of the vorticity perturbation
cutside this inner core that such an explanation is not valid at larger radin.

The behaviour in the inner core is captured by the analytic calculation also, but the absolute value
of the minimum is less than in the numerical calculation. This is because the magnitude of y., which
determines the magnitude of — 8y, at the rotation axis, is based upon the zero-order solution in the theury
and is not accurate (see Smith and Ulrich (1990, Fig. 3}). As in the numerical calculation, the inner core
region expands with time, and its size is well predicted also. Note that the analytic cutves are smoother in
the inner region, suggesting that the rapid oscillations in the numerical calculation are due to inadequate
resolution m the core region.

Iis both the numerical and analviic calculations, the local maximum neighbouring the inner core
ultimately assumes positive values, and its radial position drifts to a radins of about 500 km in both
cases. However, a significant difference between the two profiles is apparent at outer radii, beyond about
1000 km, where the numerical profile is positive but the analytic perturbation tends to zero from below,
Although the positive values of vorticity are small compared with those at inner radii, they extend over
a much larger area and allow for the possibility that when integrated over a large radius, they give a net
relative circulation that is zero. This is in contrast to the situation in the analytic calculation, where it is
apparent that the relative circulation is negative. Note that to 48 hours and at radii less than 2500 km,
the symmetric velocity perturbation in both models is anticyclonic, in contrast to that in the calculation
by Carr and Williams (1989, see their Fig. 6}, The reason for this difference appears to be that Carr and
Williams calculate only the effect of the relative-vorticity flux on the evolving tangential circulation, i.e.
the first term on the right-hand side of Eq. (4)—<f. their Eq. (35).

One may interpret the changes in the mean tangential flow associated with the vortex motion in terms
of the kinetic-energy budget (Carr and Williams 1989, Section 4(a)), the relative angular momentum
budget (Shapiro and Goyama 1990), or in terms of the vorticity budget, the method chosen here.

Figure 3 shows the radial profiles of the relative-vorticity flux (RVF == 2srru’l’} and absolute-vorticity
flux (AVF = 2xBr2(y sin 0 + 1¢2)} in the numerical model at 24 and 48 hours. These contribute to the
circulation tendency at radius r since multiplication of Eq. (4) by 2xr gives

H2mr}/ 9T = —RVF —~ AVF. (5)

Positive values of RVF and AVF correspond with outward vorticity fluxes through the circuit of
radius 7 and thereby lead to a reduction of relative vorticity inside this circuit. By Stokes’s theorem this is
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Figure 2. Radial profiles of azimuthally averaged perturbation telative vorticity calculated from the numerical
mode! (solid lines) and from the analytic theory {dashed lines) at {a) 24 hours, (b} 48 hours, and (c) 72 hours.
Shown in (d) are the corresponding tangential velocity profiles for the two calculations at 48 hours.

equivalent to a decrease in the circulation, 2,777, at radius r as expressed by Eq. (5). At 24 hours the RVF
term is predominantly negative inside a radius of 1000 km and, if dominant, would lead to an acceleration
of the tangential velocity in this region. At 48 hours this negative flux has increased significantly in
amplitude and leads to a cyclonic acceleration of the symmetric flow at radii near 500 km where its
magnitade exceeds the AVF term (see Fig. 3(b)). The AVF term is dominant in magnitude at most other
radii and to 48 hours and inside 2500 km radius it is mainly positive so that the symmetric flow is mostly
decelerated (Fig. 3(b)). This term decreases rapidly with radius beyond about 750 km, the radius where
it attains ifs maximum value, and at 48 hours it goes slightly negative before the calculation has 1o be
terminated at 2200 km because of the domain boundary. The influx of absolute vorticity at large radii and
the consequent acceleration of the mean tangential flow can be attributed to the far-field generation of
Rossby waves by the vortex. In a nondivergent model with an infinite domain, there is no bound to the
phase speed of such waves, although in the numerical model the maximum phase speed is determined
by the domain size. In the analytic theory these waves are not properly represented because, at any order
in the small parameter expansion, changes in relative vorticity associated with the beta-term do not feed
back to influence the advection of vorticity at that order. Presumably, this accounts for the breakdown of
the analytic theory at large radii. In this theory one can show that the planetary vorticity flux at large radii
decreases monotonically to some negative asymptotic value.
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Figure 3. Radial profile of the radial flux of absolute vorticity AVF = 2z 8r2 (1’ sin # + ¢z} (solid line) and

relative vorticity RVF = 2rru’t’ (dashed line) for the numerical model integration at (1) 24 hours and (b) 48
hours,

4. CoNCLUSIONS

We have caleulated the evolution of the symmetric circulation of a moving, hurricane-scale, barotropic
vortex on a beta-plane in the absence of any large-scale flow using the numerical model described by Smith
et al. (1990). We have shown that the north-westward drift of an initially symmetric, cyclonic vortex in
the northern hemisphere is accompanied by a decrease in the tangential circulation at most radii, and a
consequent deceleration of the azimuthally averaged tangential velocity. This decrease can be attributed
to the sum of three effects: the radial flux of relative vorticity associated with the asymmetric component



NOTES AND CORRESPONDENCE 951

of flow, the corresponding flux of planetary vorticity, and the rate of change in planetary vorticity due to
the meridional displacement of the vortex. The net rate of change in planetary vorticity, the sum of the last
two effects, makes the largest contribution to the circulation changes. The vorticity fluxes at large radu
are influenced by the generation of long Rossby waves. These interpretations are analogous to those given
by Shapiro and Ooyama (1990) in terms of integrated relative angular-momentum budgets. An advantage
of considering vorticity budgets rather than angular-momentum budgets is that, unlike the latter, they do
not give undue prominence to fluxes at large distances from the rotation axis.

The results presented in this note are different from those of Carr and Williams (1989) who found an
acceleration of the symmetric flow at inner radii and a deceleration further from the axis of rotation. This
is because Carr and Williams omit the direct effect of the absolute-vorticity flux from their calculations.

The predictions of the numerical model have been compared with those based on the analytic theory
developed by the first author and co-workers. The circulation changes calculated using the analytic theory
are qualitatively similar to those obtained from the numerical model, but they are a fraction too weak
in the inner core region and, although small at large radial distances, they have the wrong sign there. In
fact the analytic theory predicts a finite net outflux of planetary vorticity at large radii which leads to
the development of a net anticyclonic circulation there. Accordingly, the azimuthally averaged tangentiai
velocity decays only inversely with radius, irrespective of the initial decay rate, and this is inconsistent
with the asymptotic theory of Flierl et al. {1983), This represents a limitation of the long-term validity ot
the analytic theory which we attribute to the fact that it does not properly represent the far-field Rossby
waves. In the numerical model, the decay in the azimuthally averaged tangential velocity is more rapid
than 1/{radius) as expected from Flierl et al.’s result.
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APPENDIX

Derivution of Eg. (1)

The Euler equation of motion for a homogeneous, incompressible, fluid rotating with angular velocity
T may be writien as

du/dr + (w4 ) Au=-V(p/p-+ Lu?) (A1)

where u is the velocity vector, @ is the vorticity and p and p are the pressure and density. Let X, T denote
the position vector and time, respectively, in a coordinate system moving with velocity ¢ relative to the
X, t system, Then Vy == Vx and, although T =¢, 3/87 = /3¢ + ¢ - V. Thus, in the moving coordinate
system, Eq. (A.1) becomes

U/t + (0 + ) AU=~V(p/p + 1U") —f rc—de/dr {(A.2)

where the vorticity vector is e == Vi A u = Vx A U. The vorticity equation in the moving frame (the curl
of A.2)is

dw/oft+U - V@ + )=+ VU — ¢ VL. (A.3)
Iff = f(x) = (X — T}, then 6f /37T = —¢ « VI, whereupon (A.3) becomes

o+ 6/0t +U- Vi -+ = (+f)- VL. (A.4)

If the motion is two-dimensional in a plane perpendicular to £, then @ is perpendicular to VU and {A.4)
reduces to Eq. (1) when f = fk, and @ = {k
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