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The development of potential vorticity in a hurricane-like vortex
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SUMMARY

We investigate the time evolution of the potential-vorticity distribution in an axisymmetric hurricane-like
vortex using a numerical model based on a formulation by Schubert and Alworth. In particular, we compare
the vortex response to an annular heating function with that in the analytic calculation by Schubert and
Alworth in which the maximum heating rate occurs on the vortex axis. The annular heating function is intended
to better represent the latent-heat release in the eye-wall clouds of a hurricane. We show that after about four
days of integration time in the Schubert—Alworth calculation, the isentropes near the vortex centre, and hence
the prescribed heating function, become concentrated near the surface in physical space. In comparison, for
the annular heating distribution the descent of the isentropes is less marked and the vertical distribution of
the heating in physical space remains more realistic vis-d-vis a hurricane. It is significant that in thig case the
potentiai-vorticity maximum lies not on the vortex axis, as in the Schubert-Ailworth calculation, but close to
the radius of maximum heating. This appears to be consistent with observations in hurricanes. Finally we show
that, counter to intuition, there is greater subsidence on the vortex axis in the case where the heating is a
maximum on the axis. A dynamical explanation is offered for this resalt.

1. INTRODUCTION

Much of cur understanding of the dynamics of tropical-cyclone motion 1s based on
results from barotropic vortex models in which the asymmetry of the relative-vorticity
distribution has been shown to play an important role. The asymmetry can be mverted
to obtain the asymmetry in the stream function and from this the velocity of flow across
the vortex centre can be determined; this velocity is a close approximation to the
translation velocity of the vortex (Smith ef al. 1990). A natural extension of the ideas to
baroclinic vortices would point to the importance of the asymmetry in the potential-
vorticity (PV) distribution. If the vortex is in some sense in balance (e.g. if hydrostatic
and cyclostrophic balance pertain), the PV asymmetry can be inverted also to obtain the
flow across the vortex axis. As a preliminary to such an extension to tropical cyclones,
a better understanding of the PV evolution and its mature distribution in these vortices
is required, even in symmetric models of these disturbances. A first step in this direction
was made by Schubert and Alworth (1987, henceforth referred to as SA) who studied
the PV evolution in a symmetric hurricane-like vortex in which latent heat release was
represented by a prescribed heating function in a cylindrical region on an f-plane. The
formulation was based on Eliassen’s balanced vortex model (Eliassen 1952) expressed in
isentropic (&) and potential radius (R) coordinates and leads to a prediction equation
for the potential density (inverse PV) and a diagnostic equation for a function, M*, which
is related to the Montgomery potential. Knowledge of the distribution of Montgomery
potential at a particular time enables flow variables such as the tangential velocity and
the pressure to be determined. By choosing a simple heating distribution and ignoring
the effects of friction, SA were able to obtain an analytic solution to the potential density
equation. From this they calculated the evolution of the PV field as a function of time
in R—© space.

In this paper we re-examine the SA solution and show that, as the vortex develops,
the specified heating distribution becomes progressively more unrealistic vis-a-vis a
tropical cyclone. The reason is that, near the vortex axis, there 1s a very marked descent
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of the isentropes, whereupon, in physical space, the heating function becomes more and
more corcentrated in a disk-like region at low levels. Here, we present numerical
integrations of the SA equations and show that a more realistic hurricane-like vortex is
obtained by prescribing the heating in an annular region. This has implications for the
PV structure in the ‘eye’ region of the model vortex and for the strength of the subsiding
motion in the eyve as described in section 3. In the following section we describe briefly
the model formulation and method of solution.

2. THE BALANCED MODEL

(a) Model equations

The reader is referred to SA for details of the model formulation in (R, &) coor-
dinates. The key equations are the equation for the potential pseudodensity, 0%, and a
function, M*, related to the Montgomery potential, M, by the formula M™ =M + v*/2,
where v is the tangential velocity. These equations have the form

so* 1 & s 3 .
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where R is the friction, 6 is the heating function, f is the Coriolis parameter, 7 is
the time, I'(p) = (R /po)(p/po)<~', k= Ry /c,, ¢, denotes the specific heat at constant
pressure, py= 1000 mb and Ry the specific gas constant. The potential radius, R, is
defined as the radius at which an air parcel would attain zero tangential velocity if
displaced radially while conserving angular momentum and is related to the physical
radius, r, by the formula fR* = fr? + 2or. Use of the potential radius coordinate not
only facilitates a compact form of the equations, but also provides a better resolution
than physical radius in regions of strong radial gradient of potential vorticity. The
conventional Ertel potential vorticity, P, is related to o * through the formula P = (fop)/
o*, where gy (=(p, ~ pr)/(O1 — Op)) is a constant reference density, where pr = 100 mb,
Oy = 300K, O = 360K and subscripts B and T are bottom and top. Our approach
differs from that of SA in that Eq. (1) is integrated numerically in time, whereas SA
obtained an analytical solution for o® for a specific analytically prescribed heating
function. If the motion is frictionless, as is assumed here, R is materially conserved
whereupon R = (. In this case the second term in Eq. (1) vanishes. The third term in
this equation involves the diabatic heating rate, €, which in our calculation is prescribed
by the formula

6 = 2Q0(R/Ro) exp{—(R/R/} sin Z - (3)
where 0, = 27 K day ™!, R, = 250km and Z = 2(© — Oy)/(61 — Bp).

(b) Boundary conditions
The calculations are carried out in a cylindrical domain in (R, @) space, the top at
8 = O, the bottom at © = By, and the lateral boundary at R = Ry. The same boundary
conditions are used as in SA. The boundary conditions on M* express the facts that: the
upper boundary is an isobaric surface with Exner function Ir; the lower boundary has
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zero geopotential, the axis is a line of symmetry and the disturbance magnitude is
negligible at the lateral boundary. These conditions take the form

aM*
a@ mH*rﬂt@‘—_@T (4)
20M*\( _oM* N\ 1/oM*\?

(fz RaR)(® 70 _M)+E(aﬁ) =020 =064 )

aM*
g = VatR=0 (6)
M* = ¢,0p + —2E2 {1m(§~)l+H}atR=R (7)
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where p = pr + ¢, (O — ©) denotes the basic state pressure.

(¢) Numerical method

The prognostic equation for o*(=f gp/P) is solved by a predictormc{}rrector method
similar to that used by Hsu and Arakawa (1990) with the initial condition o* = ¢, (note
that initially P = f). This time integration scheme is positive definite and ensures that
the pseudodensity is positive for all time. In the method, the term 6(9{}'*) /80 in Eq. (1),
is evaluated using a predictor—corrector method. First the predictor is computed and
then the corrector for the interior field. The lateral boundaries at R =10
and Ry are inciuded in the interior sweep. SA specified the boundary values for ¢* in
Eq. (1) at ©® = @ and @y from the analytic solution using I’Hospital’s rule. Here, the
boundary values are determined by a Taylor series approximation with a second- arder
space differencing as follows

Ul’,jmax == zaijmaxml - Ui,;’max—l# at @ = @)T’ (8}
Go=20;j-1~ Gpj-2, at © = By 9)

where the index, i, denotes the horizontal grid points and j the vertical grid points.
Since the pseudodensity is always positive, the nonlinear diagnostic Eq. (2) remains
elliptic and can be solved uniquely for the Montgomery potential, M*, to recover the
wind and mass fields. In actual fact, Eq. (2) was first expressed in terms of M’ (R, ©),
the deviation of M* (R, ©) from its basic state value M (©). The resulting equation was
then solved by an iterative successive over-relaxation (SOR) method at every time-step.
An over-relaxation parameter f = 1.7 was found to be optimal and enabled the number
of iterations to be reduced to 800-1200, compared with SA who found that ‘several
thousand’ iterations were necessary when using a relaxation method ‘in the spirit of
Gauss-Seidel’ to obtain convergence. As a first guess, M’ was taken to be zero at the
first time-step. At subsequent time-steps the value at the previous time-step was used.

3. RESULTS AND DISCUSSION

As a check on the accuracy of the numerical model, Egs. (1) and (2) were integrated
for the heating function specified by SA, shown in Fig. 1(a). Initially the maximum
heating rate of 30 K day™ lies on the axis of the domain at the mid-@ level (330 K),
corresponding with a height of about 6 km. Good agreement was found between the
tangential wind speed and PV distributions calculated by SA and the corresponding ones
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abtained from the numerical calculation. For later comparison, Fig. 1(b} shows the
tangential-velocity distribution, v (R, ©), after 120 hours. At this time, the maximum
speed is 48 m s~ which exceeds hurricane strength (33 ms™'), the latter being achieved
after 96 hours of integration.
It is of interest to examine the behaviour of the isentropes themselves as the vortex
‘evolves. Figure 1(c) shows their structure at 120 hours in (R, z) space where z is physical
height. The latter was determined from the formula

Z == (M* — %2 — @H)/g (10)
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Figure 1. Calculation with Schubert and Alworth’s heating function. {a) Isolines of the heating rate as a

function of poteatial temperature, ©, and potential radius, R, The maximum heating rate of 30 K day? ocours

on the axis, R = §. Contour interval is 4.5 K day™. {(b) Isotachs of the tangential wind, v (R, ©), st 120 hours.

Contour interval is S ms™. (¢) Isentropic surfaces in (R, z) space. Contour interval is 6 K from 300 K to 360 K.

{d)-Isolires of the heating rate in (R, 2) space at 120 hours compared with those at the initial time (dashed
tine), Contour interval as in (a).
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where g denotes the acceleration due to gravity and M* = M* + M'*. The isentrope
distribution at large potential radius in this figure is essentially that of the initial distri-
bution. It is clear that after five days there has been a marked descent of the isentropes
along the vortex axis. Thus the heating distribution, which is specified as a function of
O, becomes progressively more concentrated at lower and lower levels. This is illustrated
in Fig. 1(d) which compares the heating function in (R, z) space at 120 hours with the
initial distribution (dashed line). The descent of the heating function is not at all realistic
in relation to a mature hurricane. Indeed, in the latter case, as soon as the eye has
formed, one would expect the maximum diabatic heating rate to lie off the axis in the
region of the eye-wall clouds.

Unrealistic descent of the isentropes cannot be avoided with a fixed heating function.
However, the concentration of the descent on the axis could be reduced by specifying a
more representative fixed heating function. We have investigated a variety of alternative
heating functions and present here the results of an integration with the one shown in
Fig. 2(a). This has a maximum amplitude of 27 K day ™! and lies at a potential radius of
about 160 km. Figure 2(b) shows the tangential velocity distribution in this calculation,
agaim at 120 hours. The maximum of 52 m s™! is comparable in strength with that in the
SA calculation at this time, but occurs at a potential radius of about 300 km, compared
with 160 km in the SA case. The relationship between potential radius and geometric
radius, r, at 120 hours is illustrated by the contours of r (R, ©) shown in Fig. 2(e). Near
the surface the iso-line of 100 km physical radius corresponds with a potential radius of
400 km at this time, but near the top boundary the potential radius is only about 40 km.
Typically, as the vortex evolves, the potential radius of a given physical radius increases
with time where the tangential velocity increases with time and it decreases where the
tangential velocity decreases.

The isentropes and heating function in (R, z) space at 120 hours are shown in Figs.
2(c) and 2(d), respectively. As in the SA calculation, the isentropes and hence the
region of maximum heating descend, but the amount of descent is much less extreme.
Thereupon, both the heating distribution and the pattern of isentropes are more realistic
vis-a-vis that of a mature hurricane, at least in the later stages of the calculation. At
early times, of course, the specification of an annular heating distribution is not realistic
in relation to the hurricane precursor.

Figure 3 compares the PV evolution corresponding with the two foregoing numerical
integrations as exemplified by the fields at 48 and 120 hours. Shown are the distributions
at 120 hours in both (R, @) and (R, z) cross-sections. In both model integrations the
broad-scale evolution is similar, with a strong cyclonic PV anomaly developing along the
axis and & broader anticyclonic anomaly aloft. One can interpret the evolution in two
ways. Haynes and MclIntye (1987, 1990) showed that if P is regarded as the mixing ratio
of a hypothetical ‘PV substance’ in analogy with that of a chemical tracer, then the
amount of this substance [,pP dV, contained between two isentropic surfaces cannot
change, even in the presence of diabatic and frictional processes. Here p is the fluid
density and V the volume between the two surfaces. Nevertheless, in the presence of
diabatic sources and sinks, the mass [,p dV between the two isentropes changes so that
the ‘mixing-ratio’ P, itself, changes to preserve [ypP dV. For example, in the present
case, diabatic heating in a region of stable-stratified fluid leads to a lowering of the
isentropes in that region (compare Figs. 1(c) and 2(c)). This leads to a reduction of mass
between any two isentropic surfaces below the heating maximum, with a consequent
increase in P. Above the heating maximum, the mass between two isentropic surfaces is
increased and P is decreased. In effect, the heating gives rise to a dipole anomaly of P
with the cyclonic anomaly in the lower atmosphere and the anticyclonic anomaly aloft,
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as exemplified in all paneis of Fig. 3. To better understand the vertical asymmetry of this
dipole and to interpret the PV distribution in (R, 2) space, it is helpful to consider the
conservation equation for P itself. In the presence of diabatic forcing and absence of
friction, this may be written in vector form as

%?Jru»vp—mgﬂ v (11)
where £ is the absolute vorticity vector and other quantities have been defined.
According to this equation, diabatic heating ieads to the creation of P at a rate pro-
portional to g, - . V8, which at early times in the present problem is approximately equal
to f36/dz. Again, it follows that the rate is positive below the heating maximum and
negative above it, leading to a vertically oriented dipole anomaly. However, as the
heating-induced sec{}ndary circulation develops, the PV is advected with it (second term
on the left of Eq. (11)). Accordingly, the positive PV anomaly generated below the
heating maximum is carried to high levels within the annulus of heating, while the
negative anomaly is carried by the upper-level outflow to large radi where 1t experiences
subsidence in the return branch of the circulation. These structures are clearly evident
in Fig. 3. Note that, as the vortex evolves, the absolute vorticity field progressively
deviates from the planetar}f vorticity and the diabatic source term becomes distorted as
well,

There are clear differences in detail between the PV fields in SA calculajion and our
own, especially in the inner region. In the former, the maximum cyclonic PV anomaly
occurs on the vortex axis along which the heating is a maximum and in the later stages
of the evolution, the negative anomaly is confined to outer radii (compare Figs. 3(a) and
(b)). In particular, the maximum relative vorticity occurs at the vortex axis. In contrast,
when the heating is confined to an annular region round the vortex, the maximum PV is
located within this annulus, and air with low PV is able to penetrate into the vortex core
from aloft in the model vortex’s eye region (Figs. 3(c) and (d)). Figures 3(e) and (f) show
the PV anomaly in (R, z) space after 120 hours for both cases. When viewing Fig. 3 one
should keep in mind the distortion implied by the potential radius coordinate (see, for
example, Fig. 2(e)). In particular, the PV maximum near the surface in Figs. 3(d) and
(f) occurs at a physical radius of about 35 km and corresponds with a maximum relative
vorticity at or near this radius. Again, this would appear to be in line with observations
which indicate that the vorticity is maximized near the radius of maximum wind (RMW)
and not at the centre as is often assumed. Gray and Shea (1973, Fig. 15) showed in their
analyses of composite data from 533 radial flights that the vorticity 1s a maximum at
about 5 km inside the RMW. A recent analysis of data for hurricane Gloria (1985) by
Shapiro and Franklin {(private communication) shows a similar feature. This analysis,
based on data at the 450 mb level which is highly filtered in the azimuthal direction,
shows the maximum of relative vorticity in a ring about 7-8 km inside the RMW,

It is of interest to examine the reason for the greater descent of the isentropes in
the SA calculation compared with the present one. First, one must bear in mind that the
descent is associated with both diabatic and adiabatic processes. Based on the initial
magnitude and vertical distribution of the heating functions, which are the same in both
calculations, one would expect the same amount of descent to be associated with the
diabatic contribution, at least at the radius of maximum heating and despite the fact that
this is different in each case. This is not necessarily true at later times, because the
heating distribution depends on the flow evolution. In the absence of rotation one would
expect the adiabatic contribution to be negative in the SA case, because the flow must
ascend over the heat source. That is true in our case also, but there the ascent is
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maximized at the radius of maximum heating which lies off the axis, i.e. one cannot rule
out axial subsidence in this case. In the presence of rotation, the adiabatic contribution
is larger in the SA case because there is actual subsidence over the heat source; moreover,
this is larger than the axial subsidence in our calculation. This can be seen in Fig. 4 which
compares the vertical-velocity distribution, w(R, z), at 48 and 120 hours in the SA
calculation with that in our own. The calculation of w is described briefly in the appendix.
In the early stages of the SA calculation {e.g. at 48 hours), there is upward motion along
the entire axis, but by 120 hours, subsiding motion has become established at all heights
along the vortex core. In our own calculation, subsidence surrounding the axis occurs
also at all heights, but is largest in the lower half of the troposphere. The occurrence of
subsidence is in line with the discussion of Smith (1980} and can be explained as follows.
Let p denote the perturbation pressure relative to the far environment. If we integrate
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the gradient wind equation go(v/r + f) = dp/dr with respect to radius, from the axis r =
{ to some large radius, where the perturbation pressure is small, we obtain essentially

o6 2
—p(0, z) = j p(% -i—fv) dr. | (12)
D
Differentiating this equation with respect to height and dividing by the density p gives
lap 14 (* (uz ) |
ez paz Gp r+f” dr. (13)

In a hurricane, the dominant contribution to the right-hand side of Eq. (13) is from
the centrifugal force. Subsidence along the vortex axis requires a downward-acting
perturbation pressure gradient. Equation (13} shows that this gradient is associated with
a decay and radial spread with height of the tangential-velocity distribution. For SA’s
heating distribution, the decay of the tangential-velocity distribution with height is
stronger than in our calculation and is consistent with stronger subsidence (not shown).
Thus the adiabatic contribution to the descent of the isentropes is larger near the vortex
axis. The diabatic contribution is also larger, being greatest in the region where the
heating 1s largest.

It 1s obvious that there are limitations of these fixed heat sources and it would be
desirable to implement a more realistic representation of convection in the model and
to include friction. Efforts are currently under way to do this.
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APPENDIX

The material derivative of 6 in (R, z, t) space can be written as

120 (8, oA o
- d.t—_ ot R.z aR x dz R'

The second term on the right-hand side vanishes because the friction is set to zero (i.e.
R = 0). The calculation of the vertical velocity is obtained from the generalized vertical
velocity in the 6 system, given by the formula

. d8 (59) (Bz) (68)
0=—= + Wi —
dt 8z/ g\ Ot R.B 02/ g

which can be rearranged to yield

. {d 0z
v=6(3) +(5) |

where z is given by Eq. (10).
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