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SUMMARY

An eardier analytic theory for the motion of a barotropic voriex in a zonally varying basic shear flow on
abeta-plane is consolidated and extended. It is shown that the theory can be derived from a power-series
expansion of variables representing the vortex asymmetry in terms of a single nondimensional parameter £ =
BLYU, where B is the meridional gradient of basic state absolute vorticity and L and U/ are the length and
velocity scales, respectively, for the outer part of the vorfex. The derivation requires infer alia that £ €1 and
that the magnitude of the basic flow scales with £, Insight is provided into the dynamics of vortex motion when
the latter condition is not fulfiiled, as in cases of moderate and large shear.

For vortices that decay appreciably more rapidly with radius than those studied in the earlier work it is
necessary to include additional terms when calculating the asymmetric vorticity to obtain an accurate prediction
of the vortex track. Analytic expressions have been obtained for these terms that lead to a theory that is valid
for a broad range of vortex profiles.

Comparisons are made between the present theory and two recent analyses for the case of zero basic flow,
contrasting the important differences in approach. The present theory gives results that are very close to one
of these, a semi-spectral numerical method,

The paper concludes with a brief discussion of aspects of vortex stability.

1. INTRODUCTION

The last few years have seen a2 major upsurge in the study of tropical-cyclone motion
with particular emphasis on the dynamical processes involved. The majority of studies
have started from the assumption that the essential processes are captured in a barotropic
model for some depth-averaged flow. Although it is not yet clear to what extent this
assumption is valid, it does find support in the comparative skill of barotropic forecast
models (see DeMaria 1987 and references). Whatever the case, the study of vortex
motion in barotropic models is insightful and is a necessary prerequisite for understanding
motion in a baroclinic atmosphere.

Two important papers on the subject of tropical-cyclone motion are those of
Kasahara and Platzman (1963) and DeMaria (1985). Both papers considered barotropic
vortex motion on a beta-plane in the presence of a basic zonal shear flow and found that
vortices are not simply advected by this flow, but drift across it; the drift velocity being
determined, inter alin, by the absolute-vorticity gradient of the vortex environment.

Through numerical integration of a nondivergent barotropic model, Chan and
Williams {1987) showed that, in the absence of a basic flow, a tropical-cyclone-scale
vortex on a northern hemisphere beta-plane drifts towards the north-west with a speed
of a few metres per second. They attributed this so-called beta-drift to the development
of an asymmetry to the initial symmetric vortex. The asymmetry is such that the stream-
function centre becomes displaced with respect to the vorticity centre so that there is a
finite component of flow across the latter.

Fiorino and Elsberry (1989) highlighted the vortex asymmetry by removing a sym-
metric vortex from the stream-function field, obtained by taking the azimuthal average
of the total stream function about the stream-function centre. They showed that the
remaining stream-function asymmetry had the form of a pair of ‘gyres’, the flow between
them, across the vortex centre, being responsible for the north-westward drift of the
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vortex. “The problem was investigated in more depth by Smith er al. (1990, henceforth
SUD) who considered the simultaneous evolution of the asymmetry in both the relative
vorticity and stream-function fields. In contrast to Fiorino and Elsberry, these authors
adopted a method of partitioning the flow between the vortex and the vortex environment
first suggested by Kasahara and Platzman (1963), in which the vortex is taken to be the
initial symmetric vortex, suitably relocated, and the environment is the residual flow
which includes the vortex-induced asymmetries. SUD were able to provide an explanation
for the growth in scale and intensity of the asymmetry with time, and for the development
of a fine-scale structure thereto in the inner region of the vortex. Similar calculations
were presented also by Shapiro and Ooyama (1990) who investigated the role of horizontal
divergence on vortex motion, and showed this to be negligibly small in their shallow-
water model.

The additional effects of horizontal shear have been studied numerically by Ulrich
and Smith (1991) and analytically by Smith (1991, henceforth $91) who used a non-
divergent barotropic model, and by Shapiro and Ooyama (1990) and Evans et al. (1991)
who used a divergent, shallow-water model.

Smith and Ulrich (1990, henceforth SU) showed that the Kasahara~Platzman method
of partitoning facilitates the construction of an approximate analytic theory for the
prototype problem with zero basic flow studied by Chan and Williams (1987) and others.
The theory hinges on a finding of SUD that, to a good first approximation, the asymmetry
in the relative-vorticity field can be calculated by assuming that air-parcel trajectories
follow cireular paths around the vortex centre. With this approximation, the asymmetry
has a simple analytic form that consists of a pair of vortex dipoles of different strengths,
their axes oriented at right-angles to each another. This asymmetry may be inverted
analytically to obtain the corresponding stream-function asymmetry, enabling the asym-
metric flow across the vortex centre to be determined. A closure assumption was made
that the vortex centre, defined as the relative-vorticity maximum, moves with the same
velocity as the asymmetric stream-flow across it. The resulting analytic expression for
this velocity may be integrated with respect to time to provide an analytic expression for
the subsequent vortex track. This simple solution, which we refer to as the zero-order
solution, bears remarkable similarity to that obtained from a numerical integration of
the full nonlinear equations, but the analytically calculated track is too far westward.
However, an iteration ahout the zero-order solution produces a first-order correction to
1t that considerably improves the agreement with the numerical solution. Indeed, for the
standard tangential wind profile used by SUD, excellent agreement was obtained over a
36-48 hour period between the vortex tracks calculated analytically and numerically. In
contrast, for a narrower vortex profile, the good agreement lasted only about 12 hours,
after which the analytically calculated and numerically calculated vortex tracks diverged.
The reasons for this breakdown have been investigated by Weber and Smith (1993) and
Ross and Kurihara (1992) in complimentary studies that shed further light on the analytic
theory ir. particular, and on vortex motion in general. We return to these studies later.

The analytic theory of SU was extended by 591 to the case of vortex motion in a
horizontal shear flow by using the same iterative technique. Again, for the standard
vortex profile of SUD), excellent agreement was obtained for a 36-48 hour period between

the tracks calculated analytically and numerically. The availability of an analytic theory
provides deeper insight into the precise effects of shear on vortex motion, enabling the

numerical solutions to be better understood. Unfortunately, the ad hoc nature of the
iterative approach makes it difficult to assess the range of validity of the theory. It is
clear, for example, that the theory must break down for sufficiently strong unidirectional
shear, or indeed, after a sufficiently long period of time (5891, section 7), even in the
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absence of shear. In both situations the central assumption of the theory that air-parcel
trajectories follow nearly circular paths around the vortex centre becomes progressively
invalid.

The present paper seeks, inter alia, to establish the range of validity of the theory
through a scale analysis of the equations of motion in a suitably partitioned form that
govern ‘the vortex’ and its ‘environment’. The appropriate choice of scales was made
possible by insights gained from the analytic theory itself. The scale analysis enables us
to relate the analytic theory to the recent studies by Peng and Williams (1990} and Ross
and Kurihara (1992). Furthermore, it enables us to pinpoint important problems that
remain to be addressed.

In brief the paper is organized as follows: the scale analysis of the barotropic vorticity
equation for a vortex in a horizontal shear flow is carried out in section 2, where the
sequence of equations developed by S91 for approximations to the asymmetric vorticity
field are derived for a particular setting of the parameters. Refinements to the analytic
theory are described in section 3 where comparisons are made between the predicted
vortex tracks in the basic thought experiment at different levels of approximation and
the track calculated from a numerical-model integration. Comparisons are made also 1n
section 3 between the analytic theory and the two other recent theories. The effects of
horizontal shear are considered in section 4, where limitations of the analytic theory as
the magnitude of the shear increases are investigated. Section 5 addresses briefly the
question of vortex stability and the conclusions are presented in section 6.

2. SCALE ANALYSIS FOR A MOVING VORTEX

We consider the basic thought experiment in the theory of tropical-cyclone motion.
This refers to the initial-value problem in which a symmetric vortex with tangential
velocity profile V(r) and corresponding relative-vorticity profile {,(r) is prescribed at
time t = 0 on a beta-plane. Here r measures radial distance from the vortex centre. The
subsequent flow is determined by the barotropic vorticity equation which, when expressed
in a coordinate system moving® with the vortex takes the form

8,L+a-Vi+0n-Vf=—¢c-Vf (2.1)

where u = v — ¢ is the wind vector relative to this coordinate frame, ¢ is the velocity of
the frame, v is the wind vector in a fixed frame, £ = k-VAv is the vertical component
of relative vorticity, fis the Coriolis parameter, K is the unit vector in the vertical and ¢
is the time. Note that, in the moving frame, f is a function of time as well as of the
meridional coordinate. We partition the total flow into a mean flow, denoted by an

overbar, the symmetric vortex, characterized by the vorticity {, and tangential wind u,,
and the residual flow denoted by a prime. Then Eqg. (2.1) can be separated into a pair
of equations for the mean and residual flow. These equations are:

3.L+06-VE+u-Vf=—¢-Vf (2.2)
and
8,5 +u, - VE +u, - V(f+=—u'-V{,~u- V¢ ~u' - V({+f)~u-VE—u- VL (2.3)

respectively. Note that in this method of partitioning, where the vortex 1s defined as
the initial vortex suitably relocated, w,- Vi, = 0, and the equation for vortex vorticity
a6, +u,-VE, = 0 is trivially satisfied. Note also that the term —e-Vf can be removed

* Note that this coordinate system need not be uniformly translating.
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from (2.2) by rewriting { = {, + (s, where 8,64 = —¢- Vf = fc,, ¢, = dy /dt is the north-
ward speed and y. 1s the northward displacement of the vortex. It follows immediately that
s = —PBv,, which represents a spatially uniform vorticity associated with the translation of
the coordinate frame. While such a decomposition is seemingly neat, in practice it would
appear to be simpler to solve the mean-flow equation in a stationary reference frame.
For exaraple, in the case of a steady zonal mean flow, Eq. (2.2) is trivially satisfied
when expressed in a stationary frame, but in the moving frame u is a function of both
y and ¢,

Our plan is to carry out a scale analysis of Egs. (2.2) and (2.3). We begin with the
case of zero basic flow (u=0) and consider first the total-vorticity equation (2.1).
Calculations are carried out for latitude 12.5° where $=2.23 x 107" m~!s~!, Taking
length and velocity scales L and U for the asymmetric vortex, and assuming an advective
time-scale L/U, the nondimensional form of {2.1) contains the single nondimensional
parameter £ = $L2/U, (see, for example, Peng and Williams 1990). For the tropical-
cyclone-scale wind profiles used by Chan and Williams (1987) and SUD (the profiles
used by SUD and the corresponding vorticity profiles are shown in Fig. 1), & increases
in magnitude from 5 X 1073, when U is taken to be the maximum tangential wind speed
and L to be the radius at which it occurs, to about 1071 if L is taken to be the radius at
which the wind speed has reduced to gale force (U = 15ms™1). Since it is the outer wind
profile that is all important for vortex motion (Fiorino and Elsberry 1989) and since the
outer region of the vortex is where the vorticity asymmetry has coherent structare (SUD,
Fig. 2}, the choice of scales characterizing the outer wind profile would seem to be more
appropriate. Taking L = 300 km and U/ = 15 ms™! gives ¢ = 0.13. A related complication
in scaling Eq. (2.1) arises from the fact that d{,/dr varies by more than two orders of
magnitude across the vortex. The variation of (d,/dr}/B and (d,/dr)/(V/r*) with radius
for the two vortex profiles in Fig. 1(a) are shown also in Fig. 1. Considering first the
broad vortex, we note that d&,/dr is comparable in order of magnitude with 8 at radii
where the vorticity asymmetry has coherent structure (typically beyond 300 km); in fact
dg,/dr = 3.68 at r=300km and 1.98 at r = 400 km. Thus, for this vortex we assume
that dZ,/dr scales with B, although similar arguments might have been used to scale it
with U/L.? in this region (see later). We consider the scaling for the narrow vortex later.

When a mean flow is present it is appropriate to redefine ¢ as BL?/U, where B is a
characteristic value for the basic-state absolute-vorticity gradient V(£ + f), and to scale
d¢,/dr with B instead of . We assume that the spatial variation of V(£ + £) is small over
the vortex scale L. We choose length and velocity scales L, and U, for the mean flow,
scaling & with U,/L.. Guided by the results of SU and §91, we assume that ¢ — g, scales
with £U, where ug. is the mean flow speed at the vortex centre, that £, and {’ scale with
U/L and eU/L, respectively, and that u, and u’ scale with U/ and £U. Finally, we assume
that U, == ¢l and L. = L/¢. Then, with the foregoing considerations, we take

u, = L, (2.4a)

u' = Ulen, + g0, +...) (2.4b)
E=(U/LYek, + €25, +..)) (2.4c)
Vi, = BV{, (2.4d)

¢ = Ulec, +e%¢; +...) (2.4¢)

i = eV, (2.4f)

Vi + Bi= B(VE, +j). (2.4g)
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Figure 1. (a) Tangential wind profiles V{r}, and (b) vortex vorticity profiles {,(r) for the broad vortex (solid
lines) and the narrow vortex (dashed lines) used for the calculations herein. (c) and (d) Radial variation of the
guantities (d,/d7)/f and r*{(d,/dr)/V(r). respectively, for the two profiles.

where j is the unit vector pointing northwards. Substitution into {(2.3) then gives to orders
g, €2, ¢ and &*,

0,81 +ug Vi +up-(j+ Vi) =0 (2.5)
3,52 +p-VEy = —uy V8o —uy V& —uy (i + Vi) — Uy V& — - VE,  (2.6)
3,85 +up- Vi3 = —uy- Vg, — Uz'vgz =up- Vi —uay-(j + T‘fﬁ) = ug Vg, (2.7)
8,65 +uy-Vi, = —u;-Viy—.... {2.8)

Equation (2.5) expresses mathematically the assumption made earlier that, to a first
approximation, the vorticity asymmetry is determined by taking the absolute vorticity to

be conserved following hypothetical air parcels moving in circular paths around the
vortex; its solution has the simple mathematical form (891, Egs. (3.3)-(3.5))

Eyo=E(r,f}cos 8+ Ei(r,Dsin 6 (2.9)
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where
L, £) = — Brsin [Q(r)] (2.10a)
Eul(r, 1) = —Br{l — cos [Q(r}t]} (2.10b)

Q(r) =V(r)/r and 8= 6 + 8. The angle O, is that between the absolute-vorticity-
gradient vector and north, measured clockwise from north.

The vortex velocity ¢ does not appear explicitly in (2.5). More generally, the
contribution ¢, to ¢ at order &* does not appear in the equation for {,(n > 1), but is
determined by the requirement that, at this level of approximation, the relative flow
across the vortex centre is zero. This is the second key assumption of the theory as it
provides a closure of the equations at each order of ¢, and allows the vortex track xc(z‘)
to be determined to any order of ¢, since dx,/dt = c.

The next-order correction is determined by calculating the rate of change of vorticity
following similar hypothetical air parcels associated with:

(1) the advection of the basic vortex vorticity by the lowest- or zero-order asym-
metric flow (the term —wu,-VE,),

(ii) the advection of the zero-order asymmetric vorticity by the zero-order asym-
metric flow (the term —u,-V{,),

(1ii) the advection of mean flow absolute vorticity by the zero-order asymmetric flow
(the term ~u,-(j + V&,),

(iv) the advection of the zero-order vorticity field by the basic flow (the term
—uy- VL), and

(v) the advection of the first-order vorticity field by the basic flow (the term
—uy-VEy).

Note that the assumption that V{, is O(B) brings terms involving V, and V{, into the
same equation, although higher-order terms V¢, (n =2, 3 ...) appear in sequence. SU
showed that the first of these terms contributes to the azimuthal wave-number 1 asym-
metry and that, for the broader of the two vortex profiles they considered, it accounts

for mosi of the difference between the numerically calculated vortex track and that
obtainec analytically based on the asymmetric stream function obtained by inverting
(2.9). They showed that the second and third terms lead to corrections at azimuthal wave
numbers 0 and 2 with no direct effect on the track, and hypothesized that their magnitude
would be small. This was confirmed by $91; see section 5(b) therein. SU did not calculate
any of the terms in Eqgs. (2.7) and (2.8), assuming that these would be small also. As it
turns out this assumption is valid for the broad vortex but, as shown by Ross and Kurihara
(1992), the leading term on the right-hand side of Eqg. (2.7) contributes to the wave-
number 1 asymmetry also and, moreover, its inclusion accounts for most of the dis-
crepancy between the analytically and numerically calculated tracks found by SU in the
case of the narrow vortex. Ross and Kurihara used a numerical procedure to estimate
the effect of this term. In section 3 and in the appendix we show how an analytic
expression may be obtained, not only for the contribution of this term to the vorticity
asymme:ry, but also for its effect on the vortex track. 591 calculated the terms involving

the basic flow In (iv} and (v) above and showed that their contribution to the vortex
asymmesry at various wave numbers depends on the structure of the shear (see S91,
Table 1).

Inspection of Fig. 1(d) suggests that it would be equally acceptable to scale di,/dr
with U/L?, in which case the terms —u,- VI, would need to be moved from the right-
hand side of the equation for {,.; in Egs. (2.5)-(2.8) and placed on the left-hand
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side of the equation for {,. However, this would greatly complicate the solution of
these equations, a complication that the calculations of SU and 591 have shown to be
unnecessary.

The need to include additional terms in the theory for the case of the narrow vortex
may be understood from the foregoing scale analysis. Choosing scales for U and L as
before, it turns out that for this vortex L = 237km when U= 15ms™!; then £ = 0.08,
which is less than that for the broader vortex. However, i this case |df,/dr] =
1.3x 107 m™"'s7! (~608) at r =300km, 2.1 X 107" m~1s"! (~98) at r = 400 km, and
1.2 x 1077 m~ ¢! (~548) at r = L. Clearly this places a strain on the assumption that
IVZ,| is O(f) at radii where the beta-gyres have coherent structure. Indeed, it indicates
that the terms involving V{; in Egs. (2.6)-(2.8) should be elevated to equations of lower-
order in g, i.e. that (2.4d) should be rescaled. In fact, inspection of Figs. 1{c) and 1(d)
suggests that U/L* might be a more appropriate scaling for V{, in this case, at least if
L = 237 km! Despite this the results to be described show that the iterative procedure
based on the sequential solution of (2.5)-(2.8) leads to an accurate solution for the vortex
track in this case, provided that one includes the effects of higher-order terms of the type
—u,- V&, In fact we show later that it i1s necessary to calculate the effect of only one
extra term, —u,-V,, in addition to —u;-V{,, to achieve comparable accuracy in the
vortex track with the calculation for the broad vortex. Evidently the iterative solution
based on Egs. (2.5)-(2.8) is more robust than the scale analysis would suggest.

3. REFINEMENTS TO THE ANALYTIC THEORY

The contributions to the vorticity asymmetry £, arising from the terms —w,_,-VE,
{(n=73, 4)in Egs. (2.7) and (2.8) have the form

Eni = Lpelr, ) cos @ + E i (r, £) sin @ (3.1)

where the functions ., {, are given in the appendix. The remaining terms in Eq. {2.7)
for the case of zero basic flow include wave-number 1 components also, but these are
algebraically very complicated and have not been worked out. Their contribution would
appear, however, to be small, as shown by the accuracy of the predicted vortex tracks
when they are excluded (see below). Their effect when uy = 0 is included in the Fourier
truncation wave-number expansion of Ross and Kurihara (1992).

The inclusion of higher-order terms in the analytic theory of SU can lead to a
dramatic improvement in the extended-range calculation for vortex profiles that decay
relatively rapidly with radius. This is illustrated in Fig. 2 which compares the analyti-
cally calculated tracks at various levels of approximation in & with that from a full nu-
merical calculation for the narrow and broad vortices studied by SU when there is no
basic flow (n=10). As in SU the numerical calculations were carried out in a
4000 km X 4000 km domain with a grid resolution of 20 km X 20 km and with the vortex
mitially at the centre of the domain. Figure 2{a} compares the calculated tracks for the
narrow vortex for a 48-hour integration. As shown by SU, the lowest-order solution gives
a track (AOQ) that from the initial instant is too far westward compared with the numerically
calculated track (N}, which is regarded as the control. The inclusion of the first-order
correction gives tfrack A1 which is a significant improvement, being almost identical with
the control for the first 12 hours but deviating significantly therefrom at later times. At
48 hours the track error is over 80 km. As shown by Ross and Kurihara (1992) a
considerable further improvement is obtained in this case by including the effects of the
term ~u,- Vi, in Eq. (2.7). This leads to the track A2, whereby the 48-hour track error
is reduced to only 25 km. Inclusion of the additional track correction arising from the
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Figure 2. Analytically calculated vortex tracks at different levels of approximation in £ compared with the
track of the corresponding numerical solution (denoted by N) in the case of zero basic flow; {a) is for the
narcow vorlex and (b} for the broad vortex in Fig. 1. Tracks AU and Al refer to the O{e) and O(&?) theory,
equivalent to that worked out by 891. Track AZ includes the effect of the first term on the right-hand side of
Eq. (2.7), while track A3 includes this together with the first term on the right-hand side of Eq. (2.8). The 48-
hour vortey position calculated by Ross and Kurihara (1992} 1s denoted by 2 star. The vortex positions are
marked at S-hour intervals by the following symbols: track N, cyclone symbol; track A{, solid squares; track
Al, solid circles; track AZ, solid triangles and track A3, diamonds.

term —u,- Vin Eq. (2.8) gives the track A3 and halves the previous 48-hour track error
to about 18 km, less than the grid size used in the control calculation. Details of the
analytic calculations on which tracks A2 and A3 are based are given in the appendix.
The numencally calculated vortex position obtained by Ross and Kurihara at 48 hours,
shown in Fig. 2(a) by a solid star, agrees closely with our analytic calculation AZ.

Figure 2(b) shows the corresponding track calculations for the broader vortex of
SU. In this case the track Al is a good approximation to the control for the full 48-hour
period, the direction being almost identical but the displacement being 40 km too large.
‘Track A’ has a 48-hour error of only 27 km, again close to the resolution of the control
calculation, but in this case track A3 gives no further improvement. The relative accuracy
of track Al in this case compared with the case of the narrow vortex is consistent with
the scale analysis presented in section 2. Note that, even for the broad vortex, the track
correction at O(e) that incorporates the effects of the term and leads to the track Al is
not a small one—the difference between the tracks A0 and A1 is appreciable. This is
consisterit with the fact that 8 is numerically an underestimate for |dZ,/dr|, and U/L? is
an over-cstimate in the outer part of the vortex (see Figs. 1(c) and 1(d)).

(a) Comparison with Ross and Kurihara's theory

At this point it is appropriate to note the difference in approach taken by Ross and
Kurihara (1992) in comparison with our own. They begin by separating the symmetric
and asymimetric contributions to the vorticity field in the barotropic vorticity equation,



TROPICAL-CYCLONE MOTION IN BAROTROPIC SHEAR FLOW 1157

equivalent to Eq. (2.3). They then expand the vorticity and velocity fields in a series of
azimuthal wave-number components, the amplitude and phase of which are functions of
radius and time. The radial dependence is discretized over a series of annular rings of
radius r, and the time dependence of amplitude and phase in each ring is determined
from equations derived from the symmetric and asymmetric components of the barotropic
vorticity equation. The time integrations are carried out numerically. Different levels of
approximation are obtained by truncating the equations at a certain azimuthal wave
number. The lowest-order nontrivial calculation (denoted K1 by Ross and Kurihara) is
obtained by truncating at wave number 1 while treating the symmetric vortex as time
invariant. This corresponds with the numerical approximation to the zero-order solution
(2.9) and the correction thereto, obtained by solving (2.6) and (2.7) with the wave-
number 1 component of the forcing term —u, - Viy (n = 1, 2) on the right-hand side. At
the next order of truncation, denoted K01, the method picks up, inter alia, corrections
to the symmetric velocity field arising from the term —u,-V{, in Eq. (2.6). This correction
is taken into account when calculating, for example, the wave-number 1 asymmetry
produced by the advection of absolute vorticity by the symmetric velocity component.
As we have seen, they are important for an accurate calculation of the track in the case
of the narrow vortex. Even so, at this level of truncation, Ross and Kurihara’s scheme
omits a contribution to the asymmetric vorticity from the term u,- VS, in Eq. (2.6) which,
although of wave number 3, is comparable in magnitude with the one of wave number
1 that is retained (891). It is evident from Ross and Kurihara’s work that this term is of
no consequence for the vortex track. Indeed, Ross and Kurihara’s track K1 and that
obtained from truncation at a wave number 2, denoted by K012, are both comparable
with that of the refined analytic theory described earlier, and also with the numerically
calculated track. Ross and Kurihara did not consider the effects of horizontal shear.

(b) Comparison with Peng and Williams’s theory

Peng and Williams (1990) developed a similar power-series expansion to that in
section 2, although again restricted to the case of zero basic flow., However, there are
important differences between their approach and ours, While they transform the
independent variables in the barotropic vorticity equation to a coordinate system moving
with the vortex, they leave the dependent variables in the stationary frame of reference.
As in section 2, they still expand the vorticity and tangential velocity as power series in
¢ in which, to zero order, the two quanfities are dependent only on radius. This 1s
consistent, however, only if the dependent variables are expressed in the moving coor-
dinate system. In their case the zero-order vorticity should be a function also of time,
satisfying the equation 4,5, + ¢- V&, = 0, which unlike the situation in our case is not
trivial (see section 2, below Eq. (2.3)). As it turns out this does not itself lead to an error
in the calculation, but means that the vorticity tendency associated purely with the
translation of the vortex, represented by term 3 in Eq. (2.8) of Peng and Williams,
contributes to the calculated vortex asymmetry at wave number 1. In fact its structure is
almost 1dentical to the fields shown in SUD, Fig. 6. The presence of this contribution
leads to complications in interpreting the vortex motion in terms of Peng and Williams’s
calculated stream-function asymmetries because, unlike the wave-number 1 contributions
from other terms, this particular one must be regarded as a consequence of the motion
rather than a cause thereof. Its presence would appear to account for much, if not all,
of the inner gyre structures in many of Peng and Williams’s figures.

Peng and Williams’s theory differs from ours also in its lack of closure, whereupon
the vortex speed and direction ¢ had to be deternmned from a separate nonlinear
numerical calculation of the full initial-value problem. In addition, they adopted a scaling
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in which the term —u,-V{, appeared at O(g) in the power-series expansion of section 2
instead of at O(e°}, thereby allowing for azimuthally propagating inertial wave modes in
their analysis,

4, 'THE EFFECTS OF HORIZONTAL SHEAR

The effects of horizontal shear are basically twofold. Firstly, a non-uniform shear
affects the zero-order vorticity asymmetry through its contribution to the absolute-
vorticity gradient of the vortex environment, i.e. to the term u,-(j + VZ,) in Eq. (2.5).
Secondly it produces distortion to the basic vortex vorticity and the vortex asymmetry,
characterized in Eq. (2.6) by the terms —u-V{, and —u,-V{,, respectively. These
terms were both calculated by 591 for uniform and linear zonal shear flows for the
broader vortex in Fig. 1.

591 compared both the analytically and numerically calculated vortex tracks in the
foregoing cases and found very good agreement out to 48 hours. We present similar
comparisons here for two cases of uniform shear (5 ms™! per 1000 km: case US1, and
10ms™! per 1000 km: case US2) for both the broad and narrow vortex in Fig. 1, and
mvestigate the effect of including one or both of the terms —u,- V&, in Eq. (2.7) and
—u3* V{4 in Eq. (2.8) in the track calculation. The resuits are shown in Fig. 3. The track
Al therein is that obtained from the O(e?) analysis (i.e. using only Eqgs. {2.5) and (2.6)
to calculate the vorticity asymmetry), equivalent to that worked out by S91. The track
A2 mclucles the term —wu,- V&, in Eq. (2.7), while in the track A3 the effect of the term
—u3-VEy in Eq. (2.8) is included also.

In the case of the broad vortex (Fig. 3(a)), the inclusion of the additional terms has
a minimal impact on the O(g?) analysis; in fact, in this case, the tracks A2 and A3 are
slightly worse than Al. Asin the case of zero basic flow, the analytically calculated tracks
have a northward and eastward bias relative to the control, a difference that is not
attributable to the finite domain size used to compute the numerical track*. In the
presence of positive zonal shear, part of the eastward bias would be expected to be
assoctated with the northward bias because a slightly larger northward component of
vortex motion brings the vortex more rapidly into the increasing westerly flow.

The corresponding results for the narrow vortex are shown in Figs. 3(b) and 3(c¢).
As in the case of zero basic flow, the inclusion of the additional term —u,-V{, in the
analysis produces a significant improvement in the track compared with the O(&?) theory,
whereas the inclusion also of the term —u;-V{, leads to only a minor additional
improvement.

It 1s evident in both sets of calculations that the agreement between the analytically
and numerically calculated tracks deteriorates as the magnitude of the shear increases.
We explore now a possible reason for this deterioration.

In the scaling analysis of section 2 it was assumed that U, = ¢U, i.e. that the shear
is relatively weak. Under such circumstances the main effect of uniform shear is to
produce a wave-number 2 contribution to the vorticity asymmetry (S91, Fig. 5) while a
linear shear produces a wave-number 1 contribution (891, Fig. 9). For a given magnitude
of the shear, the validity of the assumption that, to a first approximation, air parcels

move in circular paths about the vortex centre becomes restricted with increasing time
to a progressively smaller region surrounding the vortex. It becomes similarly restricted
in radius as the magnitude of the shear increases. In either case, with increasing shear

* It is known from calculations in the case of zero basic flow that the meridional displacement of the vortex
slightly increases as the size of the computational domain increases (Fiorino and Elsberry 1989, p. 978).
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Figure 3. Eguivalent track calculations to those in Fig. 2, but in the presence of a uniform zonal shear Aow.
(a) Tracks for the broad vortex for zonal shears of Sms™? per 1000 km (leftmost tracks} and 10ms™* per
1000 km {rightmost tracks); (b} and (¢) tracks for the narrow vortex for the smaller and larger shear, respectively.

or increasing time, the terms —uy-Vig and —uy- V&, in Eq. (2.6), which represent the
distortion of the basic vortex and the zero-order vorticity asymmetry, respectively, by
the environmental flow, become elevated in importance in the power-series expansion
in section 2. In the case of uniform shear, a consequence is that the vorticity asymmetry
is drawn out in the direction of the shear to a degree that it can be no longer represented
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by a wave-number 2 asymmetry (see Smith and Ulrich 1993, Fig. 2). In essence, beyond
a certain radius, the motion is closer to rectilinear than to circular.

In view of the success of the analytic theory in capturing the dynamics of the case
of relatively weak shear, the question naturally arises: can it be extended to the case of
moderate shear? In the former case, the zero-order vortex asymmetry was calculated on
the assumption that air-parcel trajectories are circular about the vortex centre. For the
case of a more strongly sheared fiow, the relevant question seems to be: how accurately
can the vortex asymmetry be calculated by ignoring the asymmetric flow that this induces?
To explore this question we carried out a calculation for an initially symmetric vortex on
an f-plane. In this problem, the vortex is simply carried along by the value of the shear
flow at its centre and has no meridional component of motion. At a given time after the
initial instant we calculated the back trajectories from a set of points on a uniform gnid
on the assumption that the total flow at any time is simply the sum of the imposed shear
flow and the initial vortex. The trajectory equations were carried out using a standard
fourth-order Runge~Kutta algorithm. Assuming that absolute vorticity is conserved along
each trajectory, the vorticity field at time ¢, and therefore the vortex-induced asymmetry,
can be calculated from the knowledge of the initial field.

Figure 4 compares the vorticity asymmetry at 24 and 48 hours calculated from the
analytic theory, the back-trajectory method and from a full numerical solution of the
barotropic vorticity equation for a uniform shear of 10ms™ per 1000 km (107s™") on
an f-plane. While there are still some small, but noticeable, differences in detail between
the back-trajectory method and the full numerical solution at 24 hours, the former is
generally more accurate than the analytic solution. Indeed the back-trajectory method
retains considerable skill even at 48 hours. Evidently, it is reasonable to neglect the
asymmetric flow to a first approximation when calculating the parcel trajectories.
However, for moderate shear, it is inaccurate to ignore the effect of the mean flow when
doing this. While the back-trajectory method is not an analytic theory, and is not
proposed as a replacement for the numerical method, its use here helps us to identity
the prime cause for the breakdown of the analytic theory as the shear increases.

Numerical experiments show that large shear leads to the rapid demise of a vortex
as a coherent entity. An example of this effect was illustrated by SUD i1n a calculation
in which a smaller and weaker vortex lies in close proximity to a larger and stronger one.
In this simulation, the weaker vortex was rapidly destroyed by the large azimuthal shear
of the stronger one. Presumably a strong horizontal deformation field would have a
stimilar dramatic effect. As far as we are aware, the effect of a deformation field on vortex
motion has not been studied at all. SUD investigated other cases of multiple vortex
interaction numerically. Such problems pose a challenge to analytical treatment because

the assumption that the absolute-vorticity gradient be slowly varying on the scale of each
vortex is unlikely to be valid in cases of interest.

5. VORTEX STABILITY

The starting point of the analytic theory described in sections 2 and 3 is that, to a
first approximation, the asymmetric vorticity field can be calculated on the assumption
that air-parcel trajectories are circular about the moving vortex core. This assumption
suppresses any azimuthally propagating wave modes, including unstable ones, that might
otherwise exist. The linear theory of such modes would be described by Eq. (2.5) if the
additional term —wu, -V, from Eq. (2.6) were included therein. Calculations by Weber
and Smith {1993) show that no such waves exist for the broader vortex of Fig. 1, but an
unstable wave of azimuthal wave number 2 exists for the narrow vortex. The e-folding
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growth rate of the latter wave is approximately 7.4 hours. However, Weber and Smith
show that its existence is of no consequence for the vortex motion in a 48-hour track
forecast; being wave number 2, it would first have to generate a wave-number 1 asymmetry
through nonlinear interaction with other modes to affect the vortex motion.

One particular result of the linear stability analysis is the existence of a non-rotating,
neutrally stable mode of wave number 1. The stream-function perturbation associated
with this mode has a radial structure proportional to* V{r) and its radial scale is
therefore the radius of the maximum tangential wind speed. The mode corresponds to the
asymmetry that arises from a small horizontal displacement of the vortex, and its ubiquity
is a consequence of the fact that the symmetric vortex is a solution of the equations of
motion expressed in polar coordinates, even when it is not centred at the origin of these
coordinates. It follows that the mode can always be removed be redefining the vortex
centre, whereupon it might be regarded as a ‘pseudo-mode’ rather than a physical mode
of the system.

A number of authors (e.g. Willoughby 1988, 1990; Peng and Williams 1990, 1991)
have considered the possible influence of this mode on vortex motion, While its presence
is usually evident in the numerical calculations (e.g. Fiorino and Elsberry 1989; Shapiro
and Goyama 1990; SUD), it is reasonable to presume, based on the foregoing discussion,
that this 1s merely a result of inaccuracy in the algorithm used to determine the vortex
centre (defined as the relative-vorticity maximum). To check this we calculated the
residual stream-function field, obtained by subtracting the analytically calculated field
from that calculated numerically for the broad and narrow vortex in the case of zero
basic flow. The results are exemplified by the residual fields at 24 hours shown in Figs.
S(a) and 5(b) for each of these simulations. The inmer-gyre structure is a prominent
feature of the residual field in the case of the narrow vortex and has the structure of the
pseudo-mode. As shown in Fig. 5(c} these gyres can be removed by displacing the vortex
a small distance (746 m) to the south-west. We are led to conclude that the pseudo-mode
is of no dynamical consequence for vortex motion.

6. (CONCLUSIONS

We have extended the analytic theory of S91 so that it provides an accurate
representation of the motion of tropical-cyclone-scale vortices with a broad range of
sizes. We have shown also how it relates to other recent theories. The theory can be
derived as a power-series expansion in the single small nondimensional parameter g,
provided that the environmental shear is sufficiently weak. As the magnitude of the shear
mcreases, the analytic theory becomes progressively more inaccurate at any given time,
at least to the level of approximation that the algebra is manageable. Despite this
limitation, the availability of the theory provides much insight into the dynamics of
voriex motion in a barotropic framework, and assists in the interpretation of numerical
calculations,

The scale analysis indicates that for moderate shear, or for weak shear at longer
times, it is necessary to include the advective effect of the ambient flow when calculating
the zero-order vorticity asymmetry. We have illustrated the improvement in the structure

* This is truz for any vortex profile V(r); this ‘pseudo-mode’ appears to have been first discovered by Michaike
and Timme {1967).



TROPICAL-CYCLONE MOTION IN BAROTROPIC SHEAR FLOW 1163

50{] T I U Ty IR F JF 3
LU S N T L T T D T N D R
LI T T I IO T A T T T B |
\\\\ﬂ\.'l,\\‘n.n.._n-
\‘.\l.\‘\"l.\ 'i.'h'l..'i \‘ l,‘ 1." 1‘* 1‘1 a‘:
AR AT TR
w.::‘“""*--.l\
23l LAY
E LI ¥
‘nnnhkhhtng
i1I 1.. '.1§|',l lgl‘:
H"‘H‘tti“uir
|
j D il|’i:l,.H1"..f
il'll-|ll‘|‘.'_
1 ]
> SEHAY
¥::t;::‘|—-
SEERRER!
250 IEMHAL
. Foobn oy
’f ] :T " II 'l‘-ul
‘ SERRRN
3 A T SR
_5{}{} I 2ot | IO T T
-2 -25{ 0 2503 500
(a) x km
500 5G0
250 250
=
Y 4 G
-5
250 * -250
..._5{]9 “"50{] [N N T S I S S SN
-500 =250 500 ~S{K) 250
(b) {c) x km

Figure 5. Residual stream-function fields after 24 hours obtained by subtracting the analytically calculated

asymmetric stream-function fields from the corresponding numerically calculated fields. A constant value has

been subtracted from the residual ficld so that the zero contour passes through the vortex centre. {a) Broad

vortex, contour interval 10° m*s™; (b) narrow vortex, contour interval 3 X 10° m?s”! (the inner gyres result

from & relatively small inaccuracy in the centre location in the numerical model); and (¢} as in (b) but with the

accurate centre position 746 m south-west of the centre in (b). Note that the inner-gyre structure is no longer
visible.

of this asymmetry that is obtained in the case of a vortex in uniform shear on an f-plane.
Unfortunately, the calculations then become intractable to analytic development. In the
extreme case of large ambient shear, the vortex is rapidly distorted by the shear and
eventually loses its coherence as a quasi-symmetrical entity.

A notable difference between the analytically calculated and the numerically cal-
culated vorticity and stream-function asymmetries is the existence of small-scale inner
gyres in the latter. These have the structure of the neutrally stable, non-rotating pseudo-
mode that arises in the solution of the linear stability analysis for the vortex and
corresponds with a displacement of the vortex centre. We have shown that the amplitude
of the inner gyres is consistent with a displacement of the vortex centre by less than one
twentieth of the gnd size used to obtain the numerical solution. We argue that the
existence of these gyres in the numerical model is purely a result of inaccuracy of the
vortex centre-finding algorithm and that the pseudo-mode is of no dyramical consequence
in vortex motion, a view that 1s contrary to that expressed in some other recent studies.
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APPENDIX

Calculations of £, (r, 1), §,{r, 1), in Eq. (3.1)

The calculation of £, (r, 1), {7, 1) uses the same procedure as SU and S§91. Having
calculated the asymmetric stream-function contribution ., = Y, (r, ) cos 6+

Way,(7, 1) sin G associated with the wave-number 1 component of £,, the eastward (x) and
northward (y) components of u, can be written as

Waic a‘!’zzc] o= w3y
I —_ ne& _— -T2 _—
) [ . . sin & cos 6 ar ——sin? § . cos 6 ~ ¢, (A.1)
and
0Py, w21c - ["Pzzc a'f’zzs] L= =
== ﬁ? — - .
Uy PP cos @ : = 5in - " sin & cos 8 — ¢y, (A.2)

respectively, where ¢y, ¢, are the x and y components of ¢,. The drift-speed correction
¢, is determined by

‘3%1;:
ez (] ’ ar

_ 3%13
271" dr

U] (A.3)

parallel to the calculation of ¢ in SU.
From (2.7) it follows that the contribution {5, from the first term on the right-hand
side is given by

dlsy
(t

where d/df = ¢/3¢ + u,- V. As detailed in $91, this can be integrated with respect to time
to give Eq. (3.1) for n = 3. For x = ¢, s we obtain

= —u, - Vi, (A"“)

Catxe = ﬂf dfff [1 —"z] ifff q[l —f?;—] nelr,p,q,t) dgdp (A.5)

s 0 p
with
sin€2, ~sinll L2, (sinf2, —sink ) sinC}, (A.6)
(sz —-Q (L, Q ) QF(S! —Q (€2, mfuq) Q.Q, o
c0s€2, —cos€2, 2, (cosL, —cosk,) _1-cosf2,
M= = + (A7)
(€2,-Q,)(Q, Qq) Q,(0Q,-Q,)Q,~Q ) Q,Q,
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and Q, = Q(r)t, @, = Q(p)tand , = Q(p)t. The integrals in Eq. (A. 5] can be evaluated
easily using guadrature The correspondmg stream function w3, = ¥, (r, 1) cos 8 +
W17, t) sin @ is calculated using

r (7 p’ I
vue=3 [ (1-5) b 000 - 5[ Gan it x=coo)  (A®)
O 4 H

from which the corrections of the drift speed and the track of the vortex are computed
following SU.

The procedure to calculate {4 follows exactly the one described above, but now for
given 144, to yield Eq. (3.1} for n = 4 with

Brrdly [ (" . . # q
b= 2 [ . p) 6inQ, ~sin@,) | 5w, q) [ e(q, )17, . q, ) dsdqdp -
{; 0 1]
g p g
- [ atr.p) [ b(p, ) Gin @, = sin2,) f e(g. 5) 8(r p. g, 5) dsdqdp +
{0 0 1}

rr (e q
+ | a(r,p) | b(p,q) J e(q,s) h(r, p.q,s) (sin Q, — sin Q) dsdgdp —
(}

0 g
r P q
~sin@, [ atr,p) [ 6o, ) k2. 0) | e(q, ) dsdgdp | (A.9)
0 ]
ﬁfzdgu P 1
Cars = N U a(r, p) b(ﬁﬂ)(ﬂﬂsﬂr—wsﬂq)f elq.s) glr,p,q,s)dsdgdp —
{ et
g &
[ atr.p) @05 @, = 05 2,) | b(p ) | elg.) 7, 4.5) dsdadp -
0
- [ atr.p) j b(p,9) [ e(d,5)h(r.p.4.5) (cos 2, — cos 2,) dsdqdp -
3 §]
~ (1 - cos £2,) f a(r, p) f b(p.q)k(r,p,q) f E(q,S)dsdqdp} (A.10)
i} 0 ]
and
2 d 2 d pi
-(1-5) 5 (-5 e=s(i-5)
re/ dp p/ dq q
1 o Q. 1
f= [ —~ 4 ]
Q,, 19,9,,8, Q,%Q, QQ
Q. 1 1
T 0,9,.9,.9. h= Q,Q, Q. k=3 Q Q"

with the same abbreviations as above and where Q,=[Q(r) - Q(p)]r, Q,=

[Q(r) — Q(q)]t, etc. The resulting stream function ¥4 = Yy (r, 1) cos @+ Pu(r, 1)
sin 8, the correction of drift speed and track are caliculated in the same way as explained
above.
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