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SUMMARY

The recent analytic theory for the barotropic motion of an initially symmetric vortex on a beta plane at
rest presented by Smith and Ulrich s extended to the case of a horizontal shear flow, enabling the precise
effects of shear on vortex motion to be isolated. These effects are characterized by the contribution of the
shear-related terms in the vorticity equation to the evolution and structure of the wave-number-1 component
of the vortex asymmetry. The analysis proceeds on the assumption that a general shear flow may be adequately
approximated by the first three terms of a donble Taylor-series expansion about the initial vortex centre. The
manner in which the linear and quadratic terms of this expansion affect the asymmetries is illustrated in detail
for a zonal shear flow with a linear or quadratic variation in the meridional direction.

For tropical-cyclone-scale vortices, the theory shows excellent agreement with equivalent numerical
calculations for a period of one or two days. As well as providing insight into the effects of horizontal shear
on tropical-cyclone motion, the calculations have the potential to assist in the design of ‘bogus’ vortices for the
initialization of dynamically based tropical-cyclone forecast models.

1. INTRODUCTION

Our current understanding of the dynamics of tropical-cyclone motion has evolved
largely from numerical studies of barotropic vortex motion on a beta plane. The arche-
typal problem considers the mitial-value problem for the motion of an initially symmetric
vortex on a beta plane with zero basic flow (Anthes and Hoke 1975; Kitade 1981; Chan
and Williams 1987; Fiorino and Elsberry 1989a, b; Shapiro and Qoyama 1990; Smith et
al., 1990), or with a zonal shear flow (DeMaria 1985, 1987; Shapiro and Ooyama 1990;
Ulrich and Smith 1991). Ulrich and Smith op. cit. studied motion in a zonally varying
basic flow also.

These studies have highlighted the role of vortex asymmetries which have the form
of a pair of counter-rotating gyres, the so-called beta gyres. The gyres are generated by
the advection of basic-state absolute vorticity by the vortex circulation. The numerical
calculations have shown that the subsequent vortex motion can be associated with the
total ambient flow {the basic flow plus the flow associated with the vortex-induced
asymmetries) across the vortex centre.

The early analytic theory of Sasaki and Miyakoda (1954), Sasaki (1955) and Kasahara
(1957, 1960), the latter for a baroclinic model, are essentially linear theories for the initial
vortex motion and do not explain the motion found in numerical-model simulations
where nonlinear effects are dominant (Chan and Williams 1987). The more recent study
of Holland (1983) appears also to fit into this category. A more complete, partially
analytic, theory which accounted for the interaction between the vortex and its environ-
mental flow was worked out by Kasahara and Platzman (1963). These authors also
gave a clear exposition of the problem of partitioning the flow between ‘vortex’ and
‘environment’, showing that there was no unique way of doing this. Other analytic studies
are those of Willoughby (1989), Carr and Williams (1989), Peng and Williams (1991)
and Smith and Ulrich (1990; henceforth denoted by SU). In the latter an approximate
analytic theory was presented for the prototype initial-value problem, i.e. the motion of
an 1nitially symmetric vortex on a beta plane with zero basic flow. For a tropical-cyclone-
scale vortex, the theory showed excellent agreement with the corresponding numerical
calculation.
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In the present paper the theory of SU is extended to the general initial-value problem
of vortex motion in a shear flow, again on a beta plane. The availability of an analytic
solution enables the factors governing the evolution of the gyre structure to be precisely
identified and ordered in importance. The solution provides also a deeper understanding
of the numerical calculations of Ulrich and Smith (1991; henceforth denoted by US) with
some of which detailed comparisons are made.

2. THE EQUATIONS OF MOTION

The barotropic vorticity equation in a fixed frame of reference (x, y) on a rotating
earth is, ”

d .
% +u, -V, +f)=0 (2.1)
where u_ is the horizontal velocity vector, £, 18 the vertical component of relative
vorticity, f is the Coriolis parameter and ¢ is the time. "

We consider the motion of a symmetric vortex located initially at the origin (0, ) of
these coordinates and having a tangential velocity distribution V(|x|) with corresponding
vorticity distribution {4{|x|). The vortex is embedded in a basic shear flow u_ = u(x, /)
with vorticity T'(x, t). The motion is assumed to occur on a northern hemisphere beta
plane in which f increases linearly in the poleward direction y.

Asin SU, we adopt the Kasahara—-Platzman method of partitioning the flow between
the ‘vortex’ and the ‘environment’ in which the vortex is defined as the initial vorticity
distribution {(|x]) suitably relocated, and the environment is defined as the residual
vorticity field (i.e. that of the basic flow together with the vortex-induced distortion to
it). Following SU, we define the vortex centre x, = (x,, y.) to be the location of the
relative-vorticity maximum.

We investigate the vortex motion and subsequent evolution of the vorticity field in
a frame of reference (X, Y) translating with the vortex centre at velocity c. In this frame,
the vortex will continue to be defined as the vorticity distribution £(| X!}, with associated
tangential wind speed denoted by u(|X|) = (kA X)V(/X|), where X = X/|X|. The environ-
mental flow will be defined as U + U,, where U(X, #) = u(x, t} denotes the basic flow and
U,(X, #) is the residual flow characterizing the vortex-induced asymmetries. The relative-
vorticity fields corresponding with U and U, are I and I,, respectively. In terms of these
quantitics, Eq. {2.1) can be written in the translating frame as

%(f+ra+§)+(i}”+t}3+a)-v(f+rﬂ+C+f)=—C*?f- (2.2)

By definition the basic flow is taken to be independent of the vortex, whereupon mn
the translating frame it satisfies the equation

ol —
E;-I*U*‘F(I“-i—f)m—c-‘i’ﬁ (2.3)

Also by definition the vortex trivially satisfies

d
a—f+u-v;=o. (2.4)

Then subtracting Egs. (2.3)-and (2.4) from Eq. (2.2) we obtain an equation governing
the evolution of the asymmetric vorticity
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%%+u-?(l“ﬂ+r+f)= —U-V(I,+0) - U, -V([,+ ¢+ T +f). (2.5)
Note the term on the right-hand side of Eq. (2.3) represents the rate of change of
absolute vorticity associated with the rate of change of latitude of the coordinate system.
It leads to a spatially uniform particular integral T'; = — By, of the equation, where f§ =
df/dy. It turns out to be convenient later to associate this term with the asymmetric
vorticity and to assume that I' satisfies Eq. (2.3) with zero right-hand side.
In the following sections we consider approximate solutions to this equation for a

steady basic flow u(x, y) of the form
ux,y) = {ulx,y), v(x, y)}

LR
+ 3y? 20
dxXoy dy

o2, 521,
5 + Xy

= Hﬂ + X * VE{; + '%Xz (26)

0x
where a subscript ‘0’ denotes evaluation at the origin of the fixed frame (recall that this
15 the initial vortex position).

Let the vortex position at time ¢ be x, = (x.,y.). Then dx./dt = ¢. In SU, where
there was no basic flow, we adopted the closure assumption that U,(0,0) = 0, i.e. the
relative velocity of the asymmetric flow across the vortex centre is zero, the condition
that determines e. The validity of this assumption was confirmed in numerical simulations
by Smith ef al. (1990). The series of numerical calculations of vortex motion in spatially
varying basic flows by US show that, to a very good approximation, the vortex-centre
velocity as defined here is equal to the total environmental flow across the vortex centre,

1.€.
¢ = U(0,0) + ¢, 2.7)

where ¢, is determined again by the condition that U,(0,0) = 0. Accordingly we adopt

this as our closure assumption in the present theory.
Substituting x = x. + X in Eq. (2.6) and noting that U(0,0) = u(x., y.), we obtain

U(X,Y) = U(0,0) + (X + x.) - VU + $X(X + 2x,) (—?;fﬁﬁ +
+ (XY + x. Y + vy .X) 07, + 3Y(Y + 2y.) azﬁf. (2.8)
dxdy gy
Since V, = Vy, the relative vorticity of the basic state, [ = k- V, AU, is given by
=Ty+X -V, +x.-V,T, (2.9)
and the absolute vorticity thereof is
Taps = Ly + fo + AX + BY + O(|x.]) (2.10)
where _
(A,B) = (oL, /ox, B+ T, /oy). (2.11)

3. ZERO-ORDER CALCULATION OF U,(X)

Asin SU we assume that, to a first approximation, the vortex asymmetry is associated
solely with the advection of basic-state absolute vorticity by the symmetric vortex
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circulation; this has tangential wind speed V(r) = rQ(r), Q(r) being the angula? rotation
rate of the vortex. This assumption is equivalent to solving Eq. (2.5) with the right-hand
side equal to zero, but the calculation is perhaps easier to carry out by reference to
Fig. 1.

Figure 1. Arc of a hypothetical air-parcel trajectory, AB, circulating about the moving vortex centre. To
calculate F,(r, 8, 1} in Eq. (3.3} it is assumex] that the air parcel moves along the arc of a circle of radius r with
angular velocity £(r}.

Consider an air parcel initially at the point A with polar coordinates (r, 8,) and
absolute vorticity I, 4. If this moves anticlockwise to the point B(r, ) along an arc of
the circle with radius r in time ¢, conserving its absolute vorticity, then the asymmetric
vorticity at B, I',5, equals — (T'psg — Tasa), since T, is initially zero. Using Eq. (2.10)
and neglecting for the present the contribution of O(|x.|), it follows that

I(r, 8) = —Ar{cos 0 — cos 8;) — Br(sin 8 — sin ;) (3.1)
and since
g=08,+ Q(ry (3.2)
this reduces with a little algebra to the form
To(r, 8,8 = £,(r, ) cos 0 + La{r, ) sin 8 (3.3)
where
Ei(r, D) = — B rsin{f(r)t} (3.4a)
Ea(r, 1y = —B_r[1 — cos{Q(r)t}] (3.4b)
B, =V(A?+B? (3.52)
and
@=0+tan '(A/B)= 6 + 0, say. (3.5b)

Here and in what follows we use the suffix ‘0" instead of ‘a’ to denote the zero-order
vortex asymmetry. Comparing expressions (3.3) and (3.4) with Eqs. (2.6) and (2.7) of
SU we note that an east—west gradient of I' leads to a clockwise rotation of the zero-
order vorticity asymmetry about an angle €_ as well as to an increase in the strength of
the asymmetry through the contribution to B in Eq. (3.52).

The zero-order stream-function asymmetry satisfies V*¥, = I',, together with the
boundary condition Wy— W (¢) as r— o, where

W 1) = r{—cs(f) cos 8 + ¢;(¢) sin 6} (3.6)
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15 the stream function associated with a uniform flow equal and opposite to the vortex
translation (relative) velocity ¢,. Thus W, represents the relative asymmetric flow at large
distances from the vortex on account of the vortex motion. As in SU, it follows readily
that -

Wo(r, 6,0 = 1,(r, ) cos 8 + ,(r, ) sin 8 (3.7

where forn=1, 2

0=t [ (1-2) 0.0 dp. (38

{0

The form of Eq. (3.7) impiies a choice of ¢,(1), ¢,(¢) in Eq. (3.6) to ensure that the
corresponding relative velocity (Uy, V) is identically zero at the vortex centre, and this
choice represents the implementation of the closure assumption at zero order. It may be

shown that
¢ t f)11Cos 6
[ 1]=[ f2(1) fz()][' *] (3.9)
el L=fi(0 £ Lsing,
where
fult) = %r'f Eulp, D dp, (n=1,12). (3.10)
0
The relative-velocity field (L, V) is given by
W, . %,  cos oW,
Uy = S sin 6 - 50 (3.11a)
and
B'JJU B‘I‘g sin 6 8‘-}_'{}
V{}— % = ¢Os ¢ ar . 36 (3‘11b)

with W, given by Eq. (3.7).

4.  FIRST-ORDER CORRECTION TO U,(X)

As shown in SU, in the absence of a basic flow, the zerc-order theory captures the
structure of the vortex asymmetries to a remarkable extent, but the agreement with the
numerical simulations can be considerably improved by calculating a first-order cor-
rection, I';, obtained by mtegrating Eq. (2.5) with the operator acting on I'; on the left-
hand side and I', from the zero-order theory (Eq. (3.3)) on the right-hand side. We shall
show here that the same is true in the presence of a uniform and/or linear shear.

The equation for the first-order vorticity correction is

T = = =
AW VL = —Uy - V= Uy - V(T + /)~ Uy - VI~ U-VE - T- VL. (4.1)

Since this is linear in I'}, we can consider the contributions to T’y from each of the terms
on the right-hand side separately. We denote these by Iy, (n = 1-5).

(a) Calculation of Ty,
Using Eqgs. (3.7) and (3.11), it follows after a little algebra that
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id
_"U{} vg = (‘yz COS 8 qjl SIH H) "'“'“"'E. (4.2)
r dr
The equation for the contribution I'y;,
oI’
“‘“““3“‘““51_ 4+ u- vrn = _U[] " Vg (43)
may be integrated to give
rn(r, 9,f)= Cu{r,r)(:{}sg*’r* ;22(?‘, I)Siﬂa (4.4)
where
d p’
cutr = =18, 5 [ 2 (1-5) .0 5
¥ 7
and
sinfQ(r)t}  sin{Q(r)} — sin{Q(p)}
nl(r?p!r) = ( ) - O — (463)
£2(r) (r) — Q(p)
1 — cos{Q()}  cos{Q(r)t} — cos{Q(p)i}
r,p,t) = + . 4.6b
1P ) =T () - ) (60

The details are given in Appendix A of SU. The integrals in Eq. (4.5) may be readily
evaluated using quadrature when £2(r) is prescribed.

(b) Calculation of T'y,
_ 1 _ ” _
U - V(T +f) m;](f% I, Yy cos 8 + 3, sin 6)

where J(a,b) = (da/ary(8b/38) — (ab/or)(0af66) is the Jacobian operator With a
little algebra it can be shown using Eq. (2.11) that a(f+ T)/ar=B_sin 8 and
Hf+D)/oo =B L cos 0; and with some further reduction it is found that

—Uy - ‘?(l" + F) = A,(r, ) + By(r, 1) cos 28 + C,{r, £) sin 26 (4.7)
where |
im, (4 )
Az = %B*( ar * 4
L Yy %)
B, = %B*( dr r > (4.8)
and
d
ar r

Then using Eq. (3.8) with Eq. (3.4), the equation

aT
—af% +u-Vlp = —Uys - V(T +f) (4.9)

can be integrated to give
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Ty =Eolr, O + Eae(r, ) cos 26 + Eo(r, ) sin 268 (4.10)

where the functional forms of {,,(r, #), (v = 0, ¢, s) and additional details of the calculation
are given in Appendix 1.

(¢) Calculation of T'y
1 _ _ - —
Uy - VI = ;J(@‘l cos B+ {,sin @, ¢, cos § + ¢, sin 8)

reduces with a little algebra to a similar form to Eq. (4.7), i.e.

_U{] : VF{] — Ag(f, f) + 33()", f] LCOSs 2§ + C;,(r, f) sin 25 (411)
Then, as in section 4(b), the equation
oI’
—E -Vl = ~U,- VI, (4.12)

can be integrated to give
T3 =Cx(r, 8) + Eac(r, Hcos 20 + £,5.(r, ) sin 26. (4.13)

Again the details, including expressions for ,,(r, 1), (v = 0, ¢, s), are sketched in Appen-
dix 1.

(d) Calculation {?f F}g

For a basic flow of the form of Eqgs. (2.6) or (2.8) it is convenient to introduce the
deformation terms Eg= Uy ~ V s Fo =V + Uyﬂ and their gradients evaluated at the
origin, in addition to the vartimty Fo=Vy — Uy. Of course, the divergence and its
dertvatives must be zero in this model. Then with some straightforward algebraic
manipulation the term U - V£ may be written in the form

— dé - d
~U -V = §? d—f(r},g cos 8 — I' 4 sin 8) — %rd—f(Ea cos 28 — F, sin 28) —

d
3 é{(gm — Fy0) €08 36 + (E, + F,q) sin 36} -

d .
—r-d—fx (E.5 cos28 + F,q sin 28) —

d
- E%yc(Eﬂ, cos 28 + F,; sin 26). (4.14)

Let I'y; (i = 1-4) denote the contributions to the solution of
a4 =
-—é‘;‘* +a- VI =~U,- -V (4.15)

from the first, second, third and the sum of the last two terms on the right-hand side of
Eq. (4.14). Then, as detailed in Appendix 2,

Flé’el S C,ﬂc(r, I) cos 8 + C4E(r, f) sin @ (4.163)
F]_,;l_z — C@E(h I} cos 26 + C#ls‘ (r, f) sin 26 (4.16b)
I3 = Eaac (7, £) cos 38 + (45, (r, 1) sin 36 (4.16¢)
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and
Tisq = Caac(r, 1) €05 20 + yus(r, 1) sin 28. (4.16d)

For a general flow, the expressions for {,.(r,f) and {4 (r,t) are rather cumbersome and
we have restricted attention to the case of a zonal shear flow. In particular, for uniform
shear, only I'y4, 15 nonzero.

(¢) Calculation of I'ys
For a zonal shear flow U = (U(¥),0),

— — - ol
~U-VIy = {T,Y + 4T, Y(Y + 2y,)} “'gf- (4.17)
If T'ys; (i = 1-3) denote the contributions to the solution of
al —
“"”g‘“;f‘ﬂ‘ +u-Vly=-U- VI, (4.18)

from the terms proportional to Y, Y* and Yy, on the right-hand side of Eq. (4.17), it can
be shown that

Flﬁl m §51f(?', f) cos 8 + Cﬂls(r? f) sin & + CSICZS (r, f) cos 36 + thg(f', I) sin 36 (4.193)

L5 = Esa0(r, £) + Lsnelr, ) co8 26 + Lo (1, 1) 5in 26 + L5 (r, ) 008 46 + L554(r, 1) 5in 46
| (4.19b)
F153 = §53c(r, t) cos O + @'533(?‘, f) sin @ + ng,_g(r, t) cos 38 + ngﬁ(?’, f) sin 36 (419C)

as detailed in Appendix 3. It is noteworthy that for a uniform shear, only I'j5; 1S nonzero
as is evident from Eq. (4.17).

5. GYRE STRUCTURE CALCULATIONS

In this section we apply the foregomng theory to analyse the vorficity and stream-
function asymmetries that develop in the course of motion of an initially symmetric
vortex in uniform or linear shear. The initial vortex is the same as that used by Smith ef
al. {1990) and SU, having a maximum tangential wind speed of 40ms™! at a radius of
100 km and reducing to 15ms™ at 300 km radius. For later reference the corresponding
radial vorticity profile is shown in Fig. 2. The results are compared with the numerical

calculations of US. Accordingly, unless otherwise stated, the standard value of § used is
2.23 X 107U m s~ which we denote by B,. To begin with we consider aspects of the
calculation for zero basic flow that were not addressed in SU.

(a} Zero basic flow

The theory presented in SU considered the contribution of the vorticity correction
I;;, but only briefly that of I';,, arguing that this, together with the contribution of T';5,
should be small. This is confirmed by the present analysis as indicated in Fig. 3. The
latter compares the asymmetric vorticity field 'y + I'y; (Fig. 3(a)) as calculated by SU

with the total field T'y + I'; (Fig. 3(b)). The most obvious difference is that the anticyclonic
gyre is slightly stronger and the cyclonic gyre is slightly weaker in the total field, consistent

with a symmetric anticyclonic vorticity contribution from I'y; and I'y;. Inclusion of the
additional terms brings the asymmetry even closer to that calculated from the full
numerical solution of the problem shown in Fig. 3(c) (see also SU, Fig. 10).
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Figure 2. Radial profile of vortex vorticity, {(r), for the calculations presented in this paper.

lﬁﬂﬁ=r--;--==|---a:--ss 16‘0“'!!1;||*||l:||;|;|1
(@) y r{b) .
S - - S00 3 .
& - - & I )
woddl 0 - vl 0 .
- : : ”) B i
-500 | - ~500 § .
WIE‘B[}|.a|¢lld|s|1|!1;:|In1s:hr “iﬂ{}ﬁu"i‘;"liij".l':*‘w
—-1000 -500 o 500 1060 ~1000 ~200 { =08 1000
X km x km
IBGE} v r L] r 1 E] H ) 13 13 T T F ] { H [ T ¥
-{C) .
SO0 |- -
& X ]
Y ﬂ - -
et : "
~300 | -
_1 ] S I N S N TWOT S S S W WO DR T TN R T T 1 |-
UBEIDI'}U ~508 [ S00 1060

x km

Figure 3. (a) Asymmetric vorticity field, I';+ Iy, at 24 hours as calculated by SU, (b) the total field
Fo+ By + Ty + I'ys and () the corresponding field obtained by Smith ef al. (1990) from a full numerical
solution of the problem. Contour interval is 5.0 X 10~%s7'. Dashed lines indicate negative values,
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The symmetric contributions are of interest, infer alia, because they characterze
changes to the total symmetric vortex circulation as the flow evolves; recall that these
~ changes are considered as changes to the environment in the present method of partition-
ing. The symmetric vorticity corrections Cy(r, )1 and Cy(r,?) and their sum are shown
in Fig. 4(a) at 24 hours and the tangential velocity profile associated with their sum 1s
shown in Fig. 4(b). Note that {,, is anticyclonic and relatively uniform inside a radius of
300 km beyond which it decreases rapidly to zero. In contrast, 3 has a narrow cyclonic
regime between 250 and 450km, peaking near 300km with a value comparable n
magnitude with the minimum value of ), and a broader anticyclonic regime with a
minimum near 550km radius. Accordingly, &y, + £y i8 everywhere anticyclonic. Its
magnitude is relatively large and uniform to a radius of 250 km, beyond which it reduces
rapidly to zero and then increases again to reach a second maximum near 550km,
reflecting the contribution from {3,. At larger radii its magnitude decreases rapidly to
zero. The associated tangential velocity profile reflects the double-peak structure of the
vorticity field; the velocity increases linearly with radius where the vorticity is appreciably
uniform, starts to decay as the vorticity falls to zero, and then increases further to reach
a maximum (in magnitude) of 0.23ms™! at 700km. Beyond this radius the tangential
wind speed steadily declines, albeit stowly, i.e. the finite anticyclonic circulation as r— x
implies a decay like 1/ in the wind speed at sufficiently large radii. The particular form
and size of this correction to the symmetric wind speed has implications for the ultimate
breakdown of the analytic theory at large times (see section 7).

i.[] b H E4 E E] T |3 T 1 -3 1 E U.DG
() ‘ ‘ ﬁ
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Figure 4. (a) Symmetric vorticity corrections Ly{r, 1), Sslr, t) and their sum {(solid line} at 24 hours. (b) Radial
profile of tangential velocity v1(r} associated with the vorticity field &3 + Cay at 24 hours.

(b} Sheared basic flow

In general, the effects of shear on the evolving vortex structure are two-fold. Firstly,
shear acts to distort the existing vorticity field including the symmetric vortex, an effect
represented by I'y,, and the vorticity asymmetry, the distortion of which is characterized
by the term T'ys. For convenience we refer to these as the ‘vortex distortion’ and
‘asymmetry distortion’, respectively. Secondly, linear shear contributes to the basic-state
absolute-vorticity gradient and thereby enhances or reduces the effect of beta, the source
of vortex asymmetry in the case of zero basic flow.

t+ Actually, here and elsewhere, a uniform vorticity {ag(%, ) has been subtracted from Gy(r, 7). As shown in
Appendix 1, this represents the increase in basic-state absolute vorticity associated with the meridional motion
of the vortex. Its inclusion would imply a solid-body rotation about the vortex centre.
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(i) Uniform shear. For a linear velocity profile (i.e. for uniform shear), T'y, = 0, so that
the only contribution to I'y, is from I'y,,. Thus uniform shear produces a wave-number-
2 vortex distortion. This is easy to understand by reference to Fig. 5. The vortex vorticity
gradient is negative inside a radius of 255km (say ry) and positive outside this radius
(Fig. 2). Therefore 9£/3.X is positive for X > 0 and r > r, and negative for X <0 and
r<rg If U= —UyY, —Ud3{/9X is negative in the first and third quadrants for r > r,
and positive in the second and fourth quadrants. For r < ry, the signs are reversed. Figure
6(a) shows the calculation of I'; at 24 hours when Uy, = Sms™" per 1000 km, the case
3A2 studied by US and designated here as the case LP1 (for hinear velocity profile,
positive sign). Since the vorticity tendency is relative to the motion of a rotating air
parcel (Eq. (4.1)), the pattern of I'y, at inner radii is strongly influenced by the large
radial shear of the azimuthal wind and consists of mterleaving spiral regions of positive
and negative vorticity. The maximum amplitude of I';; (1.1 x 107571 at 24 hours) occurs
at a radius greater than ry. Figures 6(b) and 6(c) show the corresponding contributions
to I'\5, from wave-number 1 and wave-number 3 respectively (see Eq. (4.19)) which, for
uniform shear, is the only nonzero contribution to the asymmetry distortion, I';s. Both
contributions have maxima rather Jess than that of I'y, (3.2 X 107%s7 ! and 2.2 X 1076571
respectively), but the former is important because asymmetries with wave-number 1
affect the vortex motion (see section 6).

A
) v A © Y

e
\E

N
"

E

— +

Figure 5. Schematic depiction of the wave-number-2 vorticity tendency arising from the term ~ U - V{ =

— ULy in the case of a uniform basic shear U = U'Y; {a} shows the sign of the vorticity gradient &, in

each quadrant for ¢ <r <ry and r, <<r, where r, is the radius at which the vorticity gradient d§/dr changes sign
(see Fig. 2} and (b) shows the vorticity tendency ~U{y in the eight regions.

The total vorticity asymmetry at 24 hours for the case LP1 is shown in Fig. 7 where
it is compared with the corresponding numerical calculation from US. Overall, the
patterns are very similar, although there are minor differences in detail as indicated in
Fig. 8(a). This shows the numerically calculated asymmetry relative to the vortex centre
minus that calculated analytically. The main difference is represented by a pair of cyclonic
gyres centred some 500 km north-east and south-west of the vortex centre. These are not
significant in the sense that they appear to have little effect on the vortex track (see
section 6). ‘The comparison of the analytically with the numerically calculated asymmetry

for the case of negative shear (Ug, = —5ms™! per 1000km), the case 3A1 studied by
US and designated here by LN, show also good agreement (cf. Figs. 7(c) and 7(d)).
Again the main difference between the two fields is a pair of cyclonic rotating gyres, now
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Figure 6. Asymmetric vorticity contributions (a) ['y, (b) the wave-number-1 contribution to I'5;, and (c) the

wave-number-3 contribution to [y, for the case of a uniform basic shear with Uy, =5 ms~! per 1000 km at 24

hours. Contour interval is 5.0 X 1076571 in (a) and 1.0 X 107%s7 ! in (b) and (c). Dashed lines indicate negative
values. The vortex centre, marked by a cyclone symbol, is at the centre of each panel.

centred some 500 km north-west and south-east of the vortex centre (Fig. 8(b)). While

these are a little stronger than in the previous case, they have little obvious effect on the
vortex track.

As the shear is increased, the difference between the numerically and analytically
calculated asymmetries begins to show a wave-number-2 component. This is exemplified
by Fig. 8(c) which shows the difference field for case LP2, which is identical with L.P1
except that the magnitude of the shear is twice as large, i.e. 10ms™' per 1000km. One
might surmize that this discrepancy could be reduced by including a vorticity correction
in which the shear-induced asymmetry I'y, is itself distorted by the shear. This does not
appear to be the case, although the structure of the discrepancy suggests that it is caused
by the progressive invalidity of the linearization about a circular vortex at large radial
distances when calculating the zero order vortex asymmetry. This effect increases with
time and increases with the magnitude of the shear.

Comparisons of the asymmetric stream function for the two cases LP1 and LN are
made in section 5(c).
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Figure 7. Total asymmetric vorticity field for the case of uniform basic shear in Fig. 6 at 24 hours. (a)

Analytical calculation and (b} corresponding numerical calculation {case 3A2} of US. The corresponding

comparisons for the case of negative shear (U, = —5ms™' per 1000 km; case 3A1 of US) are shown in (¢) and

(d). Contour interval in each case is 5.0 X 107°s7!, Dashed lines indicate negative values. The vortex centre,
marked by a cyclone symbol, is at the centre of each panel.

(iiy Linear shear. We consider now the case of a quadratic velocity profile (i.e. linear
shear) in which U, is taken to be zero (whereupon I'y = 0 and hence I'y,, and I'y5, are
both zero), but U,,, and therefore I'yg, is nonzero. It follows that I'y; has contributions
from wave numbers 1, 2 and 3 while I';; has contributions from wave numbers 1-4 and
from the symmetric term in Eq. (4.19(b)). Linear shear has two particularly important
effects that lead to a wave-number-1 asymmetry, thereby affecting the vortex track. The
first is characterized by the contribution to the absolute-vorticity gradient of the basic
flow, which directly affects the zero-order vorticity asymmetry through its contribution
to B (see Eq. (2.10)) and hence to B,. The second is associated with the distortion of
the vortex vorticity as depicted in Fig. 9 and represented mathematically by the term Iy
(see Eq. (4.16(a))). This and the other contributions to I'y; at 24 hours are shown in
Fig. 10 for the case designated as SHB in which T',, =18, and § = {3, (the case 3B1
studied by 1JS).

For I'y;, > 0, the wave-number-1 asymmetry, I'y,,, is oriented so as to contribute a
north-north-westerly component of flow across the vortex centre (Fig. 10(a)). As shown
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Figure 8. Difference between the numerically and analytically calculated vortex asymmetries (numerical

minus analytic) at 24 hours for the uniform shear cases (a) LP1, (b) LN and (c) LP2 (sce text for explanation).

Contour interval is the same as in Fig, 7. Dashed lines indicate negative differences. The vortex centre, marked
by a cyclone symbol, is at the centre of each panel.

in section 6, this has a significant effect on the vortex track. The maximum value of I'yy,
at 24 hours is 3.8 x 107%s™ 1. The wave-number-3 contribution to I'y; (I'y43) is comparable
in magnitude (maximum value 3.6 X 107%s~1), but neither this nor the wave-number-2
contribution (maximum value 8.0 x 1077 ¢™1) affects the vortex motion.

The differential advection of the zero-order vorticity asymmetry by a quadratic shear
flow leads to the first-order correction [y, The latter is relatively small compared with
I',,, but it does include a wave-number-1 component that slightly affects the vortex track,
as well as a predominantly anticyclonic symmetric contribution. The total symmetric
component, &, + &30 + Csz, has a profile structure very similar to {5 in Fig. 4(a), but
has a minimum of 1.8 X 107%s~!. The wave-number-1 component of I';s is shown in
Fig. 10(d) at 24 hours; it has a maximum at this time of 3.6 x 1077s7".

Figure 11 shows the total vorticity asymmetry at 24 hours for the case SHB, together
with the corresponding asymmetry obtained from the numerical calculation in US. As in
the case of uniform shear, the comparison is very good, the principal difference in detail
being a weak elongated cyclonic anomaly some 600km to the south-east of the vortex

(Fig. 12(a)).
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(a) Y 'y ib)

Figure 9. Schematic depiction of the wave-number-1 vorticity tendency arising from the term - '\7§ =
~Uly in the case of linear basic shear U= }U"Y?,; (a) shows the profile U(Y) and (b) shows the vorticity
tendency —UE, in the eight regions defined in Fig. 3. The sign of {y in these regions is shown in Fig. 5(a).

Figure 13 compares the analytically with the numerically calculated vorticity asym-
metry at 24 hours for the case in which I'; = 5, and f§ = 0, designated here as SNB, and
corresponding with the case 3B2 in US. The difference between these asymmetries when
centred together are shown in Fig. 12(b). Again, the patterns show very good overall
agreement, but there are small differences to the north-east and north-west of the vortex,
It is clear, however, that the analytic theory captures the principal features of the
numerical calculation.

A feature of all the fields n Figs. 6, 7, 11 and 13 is the large scale of the asymmetries,
the extreme values of which are located on the order of 300 km from the vortex centre,
similar to the zero-order asymmetry. This is a result of large particle displacements at
these radii (see section 7). At inner radii the large angular shear of the vortex produces
narrow spiral regions of vorticity of alternating sign. As discussed by Smith et af. (1990,
n. 351), the integrated effect of these spirals makes a relatively small contribution to the
stream function, and hence to the associated stream flow across the vortex centre. For
this reason also, the inner core differences in the vorticity asymmetries evident in Figs.
8 and 12 are of little consequence in regard to vortex motion.

A summary of the various contributions to the vorticity asymmetry as detailed above
15 given in Table 1.

(¢c) Stream-function asymmelries

An analytic expression for the asymmetric stream function may be obtained as
tfollows. Contributions to the asymmetric vorticity, £, are associated with stream-function
contributions, P, satisfying V21 = £ in particular, vorticity contributions of the form
E= C(r.dcos(n® +a), (n=0,1,2,...n), correspond with stream-function con-
tributions of the same form: ¢,(r, ) cos (n@ + o), where « is a constant and

B r@ 5
o = f ! f sEols, 1) ds (.12)
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Figure 10, Contribution to the vorticity asymmetry I'y from (a) wave number 1, (b) wave number 3 and (c)
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number-1 contribution to I's;. Contour interval is 1.0 X 107%s7 ! in (a) and (b) and 2.0 X 107757 in {¢) and (d).

Dashed lines indicate negative values. The vortex centre, marked by a cyclone symbol, is at the centre of each
panel.
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Note that symmetric vorticity components correspond with n =0, a = 0 and terms
involving sinnd with a = ~n/2. The integrals in Eq. {5.1) can be readily evaluated by
quadrature from the expressions (;(r,) etc. in sections 4(a)—4(e). Thereby the stream
function corresponding with the total asymmetric vorticity I'y + I';, or any component
thereof, can be easily calculated.

Figure 14 compares the asymmetric stream function calculated in this way with that
from the corresponding numerical model simulation of US at 24 hours for the four cases
discussed in sections 5(b)(i) and 5(b)(ii) above. To minimize the effects of boundary
distortion arising from the finite domain in the numerical model, the model calculations
were repeated using a 4000km X 4000 km domain, twice the size of that employed by
US, but comparisons are confined to a 2000 km X 2000 km domain. In broad terms, the
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analytic calculations the vortex is at the centre of coordinates.
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Figure 14, Continued.

correspondence of the fields is very good, a further indication that the analytic model
captures the essenttal features of the numerical solution and presumably, therefore, of
the dynamics of vortex motion.

However, there are some differences in detail; in particular, the maximum and
minimum gyre strengths are not predicted accurately in most cases, and in case SNB the
far ficld structure is not well represented by the theory. These differences are presumably
a refiection of the approximations made in deriving the theory which, inter alia, suppress
planetary-wave propagation at lowest order. This omission would be likely to show up
in the comparisons at large scale. The differences may be due also in part to the fact that
the numerical calculation assumes channel boundary conditions at a finite distance from
the vortex whereas the analytic solution is for an infinite domain.

TABLE 1. SUMMARY OF THE TERMS CONTRIBUTING TO THE VORTICITY ASYMMETRY I', AND THEIR INTER-
PRETATION

Wave-number contributions

Contribution
to T, Vorticity term i 1 2 3 4 Interpretation
3 -u V(T + f) ® Advection of basic-state
absolute vorticity by the vortex
Fu ~U,- VE @ Advection of vortex vorticity
" by the vortex asymmetry
I ~Ug - V(I + f) ® @ Advection of basic-state
absolute vorticity by the vortex
asymmeiry |
I ~Us - VI ® @ Self-advection of vortex
_ _ asymmeiry
T ~U-v¢ { Ly =0 ¢ Advection of vortex vorticity
. Lo =0 ¢ ¢ by the basic flow
I -0 V' {[m, = @ & Advection of vortex asymmetry
Ih =0 @ ¢ @ @ @ by the basic flow

Column 2 shows the term contributing to the Lagrangian vorticity tendency, 87,/4f+ u - VT,. Column 3 shows
the azimuthal wave-number contribution of each term. Wave number 0 means an axisymmetric contribution.
In the absence of shear the principal contribution to the asymmetry is from I'j and I'y;. The relative contributions
of I' ;4 and T'y5 depend on the strength and nature of the shear,
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6., VORTEX TRACK

Equation (3.9) provides an analytic expression for the zero-order vortex translation
velocity in terms of integrals of the zero-order vorticity components, §, and &,, in Eq.
(3.3) (cf. Eq. (3.10)). The vortex track xo(f) = {xo(1}, yo(#)} may be obtained for the zero-
order solution simply by integrating the equation

dxgq
% = o(f) (6.1)

with ¢(t) given by Eq. (3.9). It follows that

o(?) F(t) Fy(1) 9:*
Eu(;] } [—Fl(i) pg(;} E:QJ (6.2)
where
F(t) = 4r J’: {E C.p. 0 dt} dp,(n=1,2). (6.3)

The track correction, Ax,, associated with first-order vorticity correction, I'y, may
be obtained in a similar way. Symmetry considerations imply that only wave-number-1
components of I'y contribute to the vortex motion, i.e. to a nonzero asymmetric flow

across the vortex centre. Therefore, for a zonal shear flow in which 8, =0 (see Egs.
(2.10) and (3.5b))

Ax, = (AF,cos 8§, —AF, sin ) (6.4)

where
aF, =t [ {[ Gt ta + L) it} ap 65

and the suffix » equals ¢ for n = 1 and 5 for n = 2. Using the expressions for the vorticity
contributions given in the appendices, the inner (i.e. time) integrals may be performed
analytically and the outer integrals are again easily evaluated using quadrature.

In the case of zonal shear there is an additional component of the vortex motion
resulting from the basic flow across the vortex centre; this is represented by the first term
on the right-hand side of Eq. (2.8). The associated displacement Ax,, which must be
added to x, + AX, to calculate the vortex track, can be obtained as follows. Suppose that
during the time interval At, the vortex undergoes a meridional displacement, Ay, from
y, to y, with mean speed ¢; = Ay/At. During this time the vortex will undergo a zonal
displacement

Af [ R 4
Ay = f G(y) de + = f O(y) dy. (6.6)
] ¥1

In our case this becomes
ME = ﬁt{ﬁﬁ + wﬁy[}? + %l_fﬂyy(yz + Tlﬁﬁ\yz)} (67)

where y = (y; + y2)/2 and Ay =y, - y1.

The analytically calculated vortex tracks for three uniform shear cases LP1, LP2 and
LN are shown in Fig. 15(a) where they are compared with the corresponding numerically
predicted tracks. The three cases are identical with the cases 3A1 - 3A3 of US, but
the numerically predicted tracks shown in Fig. 15(a) were for a larger domain
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{4000 km x 4000 km) than in US. The numerical calculations were repeated here because
it is known that there is some dependence of the track on domain size for smaller domain
sizes, the deviations increasing with time (see for example Fiorino 1987}, The analytic
calculation highlights the two effects of uniform shear on the vortex track compared with
the case of zero basic flow: a zonal displacement caused by advection with the basic flow
as the vortex tracks across the shear, and a predominantly meridional displacement
associated with the wave-number-1 asymmetry in I'ys. This asymmetry, exemplified by
the vorticity distribution shown in Fig. 6(b) for the case LP1, causes an additional
poleward displacement for positive shear and an equatorward displacement for negative
shear. Note that these track differences are independent of the basic-state absolute-
vorticity gradient which is the same (i.e. B, for each case).

The tracks for the two linear shear cases SHB and SNB, corresponding with the
cases 3B1 and 3B2 of US, are shown in Fig. 15(b) together with the corresponding
numerical calculations of US for the larger domain. Differences 1n the tracks compared
with the case of zero basic flow are again attributable to zonal displacement as the vortex
moves across a varying basic flow and to a predominantly meridional displacement
associated with the wave-number-1 asymmetry. The asymmetry is dominated by the
contribution from Iy, shown in Fig. 10(a) for the case SHB, and gives an equatorward
displacement for negative U, the case illustrated. The magnitude of the displacement
is proportional to the magnitude of U,,,. There is a small meridional contribution to the
track from the wave-number-1 asymmetry in I';s; when U,,q 18 nonzero. However, this
is negligible in the case SHB, the contribution at 48 hours being less than 1%.

As in the case of zero basic flow (SU, Fig. 5), the analytically and numerically
calculated tracks agree remarkably well in all cases, at least until 24 hours. At later times
the analytic theory over-estimates the vortex speed in comparison with the numerical
calculation, except in the case of zero beta, but in all cases the track directions agree
closely until 48 hours. The smaller speed in the numerical calculations at later times may
be due in part to the increasing influence of the domain boundaries (the analytic theory
assumes an infinite domain), but is more likely to be a reflection of the progressive
breakdown of the analytic theory at large times.
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Figure 15, Analytically calculated vortex track (denoted by A) compared with the corresponding numerical

solution (denoted by N): (a) uniform shear flow cases and (b) linear shear flow cases. Each panel includes the
analytically and numerically calculated track for the case of zero basic flow (denoted ZBF ). Cyclone symbols

mark the vortex position at 12-hour intervals. (See text for explanation of other letters.)
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Note that the excellent comparison in the tracks to 48 hours in the case SNB is
despite the relatively poor comparison of the stream-function fields at large distances in
this case (see Fig. 14(d)). Evidently, the theory predicts the wave-number-1 asymmetry
adequately, since the track depends only on this component.

7. LIMITATIONS OF THE THEORY

The breakdown of the theory is discussed briefly by SU at the end of section 3. In
essence, the linearization assamption that air-parcel trajectories are approximately cir-
cular about the vortex centre is no longer valid at larger radii where tangential wind
speeds are comparable with or less than the speed of vortex motion and/or that of basic
flow. For a stationary symmetric vortex, the maximum meridional displacement of an
air parcel at radius » would be 2r, so that the maximum asymmetric vorticity perturbation
associated with the beta effect would be —2fr, i.e. this increases with r. Given sufficient
time, parcels at large radii from the vortex have the potential to produce larger vorticity
perturbations than those at inner radii, and there would be no limit te the radial scale
of the asymmetric gyres. This is confirmed by calculations of zero-order asymmetry
T'y(r, 8,1) at large times and is implicit in the theory of gyre structure given in section 4
of Smith et al. (1990). An important consequence is that the zero-order vortex speed
given by Eq. (3.9) increases indefinitely, although the rate of increase is relatively slow
after an imtial growth period (Fig. 16). Interestingly, the zero-order track remains
remarkably unidirectional during this time (see SU, Fig. 5).
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Figure 16. Variation with time of the zero-order vortex speed {solid line) and direction {dashed line) to 300
hours in the case of zero basic flow,

In practice, of course, the vortex translates, and if its tangential velocity decreases
monotonically to zero with radius r, there will be some radius, r ,.» beyond which the
relative motion on one side of it (to the east for a cyclonic vortex translating polewards)
will be anticyclonic (SU, Fig. 12). If the anticyclonic symmetric circulation change
exemplified in Fig. 4 were to be regarded as part of the vortex circulation this would
further reduce r,. If shear is present, it will generally dominate the vortex circulation at
large radn, again invalidating the zero-order asymmetry calculation in this region. We
hypothesize that the omission of these effects is a primary reason for the difference
between the analytically and numerically calculated tracks at larger times and are
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currently investigating this aspect further. In particular, it remains to be shown whether
or not the excellent agreement in the tracks out to 48 hours for the case SNB 1s tortuitous.
We may presume that the neglect of nonlinear interaction between the various wave-
number components of the vortex asymmetry is also a limitation in the accuracy of the
analytic solutions at later times.

8. DISCUSSION

The availability of an analytic theory of vortex motion not only provides a deeper
insight into the basic processes of vortex motion, but also enables the vortex-induced
asymmetries to be calculated for a specified environmental flow at a specified time. This
offers the possibility of designing more appropriate ‘bogus’ vortices for the initialization
of tropical-cyclone forecast models, a problem that was touched on m SU. It should be
possible, for example, to design an asymmetric bogus vortex that will have an mitial
speed and direction that matches the observed speed and direction of the cyclone in
question. For this purpose it may be sufficient to use only the wave-number-1 con-
tributions to the asymmetry as detailed in section 4 and the appendices. Investigations
relating to such applications of the theory are continuing.

Consideration of the initialization problem raises also the question of the existence
of a steady-state solution for motion. Although the present analytic theory breaks down
after a certain time, the processes contributing to the evolution of the vorticity field that
have been identified must continue to operate; only the feedbacks are missing in the
theory (i.e. the first-order symmetric flow correction will contribute to advection of
absolute vorticity about the vortex centre, and the velocity correction to the vortex speed
from the first-order wave-number-1 asymmetry will affect the relative flow around the
vortex). Notwithstanding the fact that, in the absence of a basic flow, vortices tend to
achieve a quasi-steady speed and direction (Chan and Williams 1987, see Fig, 6; Fiorino
and Elsberry 1989a, see Fig. 11), it appears that their vorticity'structure continues to
evolve, both in the core region owing predominantly to the large angular shear of the
tangential wind component (Shapiro and Ooyama 1990; Smith ef al. 1990) and at larger
radii owing to the excitation of planetary waves (Chan and Williams 1987). This may be
expected to be more so for the case in the presence of horizontal shear because, unless
the shear is uniform, vortices will move into regions of changing effective § (i.e. B ),
whereupon the asymmetries must continue to evolve in structure. Under these cir-
cumstances it would appear that a true steady state is unlikely to exist. Even uniform
shear will have a sustained effect on the evolution of the vorticity asymmetry, stretching
it out into longer and narrower filaments much as the angular shear of the tangential
wind acts in the vortex-core region. It is not obvious what processes could balance these
effects in the inviscid model investigated here.

The foregoing theory supposes that the particular vortex profile chosen is not
unstable to small amplitude disturbances of some form. That this would not be the case
is suggested by a stability analysis of circular vortices by Gent and McWilliams (1986)
(see also SU, section 3), and has been confirmed by detailed calculations of Weber
{1991).

The calculations presented herein are for horizontal shears that are relatively weak,
but which are typical, nonetheless, of a tropical-cyclone environment. Large shear on
the scale of the vortex may be expected to produce a large distortion of the vortex,
thereby invalidating the linearization about the basic vortex inherent in the present
method. Indeed, it may even destroy the vortex. An example was presented by Smith et
al. {1990, see Fig. 14 and the related discussion therein) in the context of a multiple
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voriex interaction. In this case, a weaker vortex was subjected to the angular shear of a
stronger one. After a certain time, the vorticity field of the weaker vortex was sheared
out into a long thin filament of vorticity along an arc of the larger vortex.

G. (CONCLUSIONS

The effects of a basic horizontal shear flow on the motion of a barotropic vortex on
a beta plane have been 1dentified and quantified through the development of an approxi-
mate analytic theory. The effects are characterized by the contribution of the shear-
related terms in the (environmental) vorticity equation to the evolution and structure of
the wave-number-1 component of the vorticity asymmetry. The vorticity asymmetry has
an associated stream-function pattern consisting of a pair of c{mnter-rotatmg gyres
analogous to the beta gyres in the case of zero basic flow.

The effects of shear have been illustrated for the case of a zonal flow with a linear
or quadratic variation in wind speed. A linear wind profile, i.e. uniform shear, induces
a first-order wave-number-1 vorticity correction by differentially advecting the existing
wave-number-1 asymmetry, but it does not affect the absolute-vorticity gradient and
therefore the zero-order asymmetry. In contrast, a quadratic wind profile makes a wave-
number-1 vorticity correction by differentially advecting the vorsex vorticity; it contributes
also to the absolute-vorticity gradient and thereby to the magnitude of the zero-order
asymmetry. Both these effects influence the vortex track, but not to the same degree.
Accordingly, vortex motion cannot be characterized by the basic-state absolute-vorticity
gradient alone—the proportionate contribution of the shear to the absolute-vorticity
gradient is important also. Finally, the displacement of the vortex centre from its initial
position leads also to a small wave-number-1 contribution to the asymmetry, and hence
to vortex motion,

The asymmetric vorticity and stream-function patterns predicted by the analytic
theory agree well with those computed by solving the problem numerically, as do the
vortex tracks for a period up to 48 hours. Ultimately, the analytic theory breaks down
for reasons that appear, inter alia, to be linked with the breakdown of the zero-order
solution. The emergence of significant nonlinear interactions between the various wave-
number components of the vortex asymmetry may contribute also to the breakdown, an
effect that is expected to increase in importance with the magnitude of the shear.
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APPENDIX 1

Calculation Gf Cgp, '{-_,‘3,,.
Differentiating Eq. (3.8) with respect to r gives

weoi] (1+2) e 0 dp

8 re

whereupon, using Eq. (3.8) itself together with Eq. (3.4), Eqgs. (4.8) give

Axr,n) = éBi j psin{€2, 1) dp

9
|""J"
By(r,8) =4B%r7% | p’sin(Q,1) dp
‘0
rr
Cy(r, 1) =3B r? | p*{1 — cos(Q, 0} dp.

{1

Here and later we denote Q(v) by Q.. Then the second two terms on the right-hand side
of Eq. (4.7) may be written

iB2 2 f pHsin 28 — sin(260 — Q, N} dr.
0
The integration of this with respect to time following a hypothetical fluid parcel from its
initial position (r, 8;) along the circle to (r, 8) is accomplished by setting 6 = 0, + Q¢
before integrating, while A, can be integrated directly. Thereby, Eq. (4.9) integrates to
give Eq. (4.10), where

r (1 —cos(82,1)
) = 487 | {220 gy
0 p
_1p2 - . c{}s(zﬂrr)wlmcas(ZQ,t)—ms(Qpr)}
) =T Lp { 20, 9,-9, P
roL (sin(2Q2,1)  sin(2€,1) — sin(€2,1)
wa L2 =2 3 ;o P
Cas(r ) = 4By r LP { 20, 2Q, - Q, }dp'

It is mteresting to note that Cyo(», ) = B_y,, y, being the meridional displacement
of the vortex as predicted by the zero-order theory. Accordingly, it represents the change
in basic state absolute vorticity of every vortex particle due to the meridional displacement
of the vortex. This term is exactly cancelled by the sum of I'y, defined in section 2,
and the additional term x.- V,I['y, =y I'y, on the right of Eq. (2.9) which was earlier
neglected. Thus, m calculating the change of relative vorticity and, in particular, the
change in the symmetric wind component associated with the vortex motion, the value
Exo(®, f) must be subtracted from the vorticity correction (7, ). This was done in
calculating the vortex asymmetries throughout this paper.

The expression for I'y4 is obtained in a similar manner. For example, in Eq. (4.11),
the expression for A.(r,1) 1s
1 (8‘:1 ,.l.g..%,. - 3‘:2 II'[1 + 31?2 CI aqji ‘:3)

“Noar » ar r arrmarr
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with similar ones for B; and C4. These can be reduced to integrals with respect to p of
functions of r, p and ¢; for example

A; = iBE [J p{sin(Q,1) — sin(L2,,1) — sin(L2, — Q, )} dp +
0

+ $uQ, jrp (1 - {;) fcos(2,1) — cos({2, — Q,))} dp].

Similar expressions are obtained for B; and C;. The latter must be combined with the
cos 26 and sin 26, as in the calculation of I';;. Again, since A is mdependent of @, it can
be integrated directly with respect to time, while, in the expression for B; cos 28 +
(', sin 28 it is necessary to substitute & = 8, + Q, ¢ before integration. After several steps
of tedious, but straightforward algebra, we obtain the following expressions for {;, in
Eq. (4.13):

(1 —cosf2,t 1—cos{Q, — Q)
Eaolr, 1) = = Llr, 7) +‘5Bi [LP{ Qr. - Q -Q, . }dP“*“
~1+
rﬂf (lw ){msﬁt 1QEQISH1QI+

I—CUS(Q — Q) —(Q, — Q,)sin(L, — Q)
@, —Q,) } p]

. .. p’ {cos2Q t—cos 2t cos282, 1—cos(L2,+L2, )1
Catr)==Ealey iy | | ety oL o -
O j (1 ){cns(ﬂ) +Q)t—c0s2Q,t  (Q,—Q; )rsin(€2, +€Q,)t

?“' —
(Q,-Q,) (Q,—-Q,)°

cos £2,71 — cos 28,1 — L 1sin Q.1
) Q2 }dp ]
|

_ ([P {sm2£2t sin€2, 1 sin2Q, ¢ sin{€2, —i—Qp)t} B
)= ~Ea i +183 | | {1 e U

(

' pA\ (sin(€2, + &, )t —sin2Q,¢ (Q, —Q,)cos(L2, + Q)
“%FQ'J ] s { ~ e _
¥ (gr_gp)_ (QerP)E

1

sin €2,¢ - sin 282 ¢ + 2 1 cos £2,¢
B Q2 } @
where Q' denotes dQ2/dr.

APPENDIX 2

Calculation of T4,
The first three contributions I',y; to T'yy satisfy an equation of the form

dr’

E*E G cosnB + Hsinnb
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where G and H are functions only of r, and d/dt means differentiation following the
hypothetical air parcel referred to in Appendix 1. Accordingly, the equatmn may be
integrated in the form

f
F, = f {Gceosn(8,+ Q')+ Hsinn(8, + Q,¢')} dt’
{] .

to give,
', ={GS(r, n) — HC{r, n)}cos n6 + {GC(r, n) + HS(r, n)} sin n8,

where C(r,n) = {1 — cos(nQ,0)}/(nS2,) and S(r, n) = sin(nQ)/(nQ2,).
For a zonal shear flow, the fourth term on the right-hand side of Eq. (4.14) is
identically zero and the last term reduces to

1 di — ;
A Yelyyo 8in 26
where
* 1 —cos Q¢
ve=18 [ p(— o2 dp (A2.1)
0 P '
Therefore I'yy, satishes
dl’ |44 df;_- (1 —cosL2,1)
= _a'?"“‘“* {)BJ’ Sm(26(} 4 262 f) dp
dt dr 7 Q,

This may be integrated with respect to time to give Eq. (4.16d) where, after a hittle
algebra,

: U Bf (1 — ¢0s2Q, ¢ N cos 262, 1 — cos 21
welrs 1) = S" 0 29, + 9,
C{JSZQ f_C{]SQ ¢

) dp

2Q, - Q,

.+.

and

dé'— sin 29 A sin2€,1 4+ sin Q¢
C-iﬂ-s(r t) - _3‘;'?'—" }ﬂy(}BJ ZQ,. + Qp -

stQ t-— smf! r) J
20— P

APPENDIX 3

Calculation of Cs,,

For a zonal shear flow 8=6 and in Eq. (4.17) ol /60X = cos8aly/or +
(sin 8/r) 8T /96, whereupon

—U - VI = (Tyrsin @ + 4T 7% sin®8 + Ty, sin 6) X
X {cos 8(L,, cos @ + &,, sin 8) — (sin 8/r){(L, cos G — £, sin 8)} (A3.1)

where subscript r denotes the partial derivative 8/9r. The second bracket on the right-
hand side of this expression can be written
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My + &ofr+ (&1 — §1/r) c08 28 + (L — o/r) 5in 26}
and, using Eq. (3.4) with B, = B,
(&1, — &1/7. &y — €2) = —BrQ't(cos Q¢, sin Q1)
and |

Ly + 3@'1/1'* = - Bre2't cos Qf — 48 sin Q.

Then the term in Eq. (A3.1) defines

df 153
dt

= —iT  Br{cos(8 — Q) — cos(8 + Q1) + 2uQt{sin(8 + Q1) + sin(30 — Q)]

where p = }rQ’/Q and d/dt has the same meaning as in Appendix 2. This equation is
readily solved by setting 6 = 8, + Qt and integrating with respect to 1, treating 6, as a
constant. After integration, 6, can be replaced by 8 — Q(r)z, giving an expression for
I'i5; of the form

Tm = {:51{' cos 8 + gSI.ﬁ sin 6 "'}* 55;‘:3 cos 38 + §51S3 sin 36

where
— in 3¢ |
(Eies E1) = =40 Bor (1 = ) (c0s 01 = S22, (1 -+ ) sin 1}
and
= sin £t — sin 30t cos 307 — cos Qr\
(G513, Gs153) = 31 Btru (ces Qr + Yoy , sin Qf + S0 ) )

Expressions for L5y, Esor Esaes Gsaed> bsas it Eq. (4.19b) are obtained in a sirnilar manner.
Using Eq. (A2.1) for y,, the contribution of the third term in the first bracket of
(A3.1} can be written

dr — e
,;;3 = 4, Bzr',l{} o0 —— [{1 —cos Q,}{cos(8 — Q,f) — cos(8 + Q1) +
+ 282(r)tu [sin(O + €,1) + sin(36 ~ Q_.N]}] dp. (A3.2)

Again this may be integrated with respect to time by first setting 8 = 8, + Q,f and treating

0y as a constant, The result is an expression of the form of Eq. (4.19¢) where, for
example,

(Eoctr,. £ 00 = ~1F0 B [ (10, f0s
in which |
X1 = (1= p){cos Q,f — (sin Q,4)/Q,1} — {sin{Q, + Q, )t — sin(Q, — Q,)/(2Q,1) +
G psin(Q, + Q) +sin Q,A/4(2Q, + Q)1 +
+(z = p Hsin(Q, — Q) + sin ,4/{(2Q, — Q)i +
+pycos(L, + Q)+ p_cos(2, — Q)

and
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X2 = (1 u)sin Q. ¢+ {cos(Q, + Q) — cos(Q, ~ Q,)}/(2Q,0) +
+ (3 — py){cos(, + Q) — cos Q.4/{2Q, + Q, )} +

+ (% o p“){COS(Qr o

Q, )~ cos Q,4/{(2Q, — Q,)1} -

— P sin(€2, + Q2 )~ p_sin(Q, — Q)

where p, = uQ,/(2Q, + Q) and p_ = uQ,/(2Q, — Q,). Expressions for 5,3 and sy
are obtained in a similar manner from the term proportional to sin(36 — Q) in

Eq. (A3.2).
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