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SUMMARY

This paper s a sequel to the recent nurnerical study of thermally driven vortices by the authors. The
modei developed earlier i1s used as a basis for comparing a variety of radial boundary conditions and to assess
their suitability for models of ‘tall-thin® atmospheric vortices, in particular dust devils. We have also deter-
mined those aspects of vortex dynamics which are least sensitive to the choice of radial boundary condition,
and those which have a stronger dependence. The results confirm the suitability of the boundary conditions
used in the earlier study, for the purposes for which that study was intended, but more realistic boundary
conditions are obtained for a dust devil model.

The discussion should provide useful guidance in the design of future observational studies of dust devils
and their immediate environment, and in the formulation of models for other types of sub-synoptic-scale
vortices such as tornadoes and waterspouts,

1. INTRODUCTION

Observational data are not yet sufficient to enable the sources of environmental vorticity
for concentrated atmospheric vortices on the sub-synoptic scale (e.g. tornadoes, water-
spouts and dust devils) to be determined with surety, although they have in each case
enabled the most likely ones to be identified. This uncertainty has been reflected in the
interpretation of laboratory and numerical simulations of concentrated vortices which
purport to model atmospheric counterparts, and it is often difficult to judge which features
of a particular model are special to that model alone (perhaps due to the way in which the
rotational motion is imposed, or to the way in which the vortex is constrained by boundaries),
and which features are typical of a range of vortex flows and not wholly or largely due to a
particular characteristic of the model.

In this paper we shall examine these questions as they relate to the problem of formu-
lating a realistic model for a dust devil, but much of our discussion is pertinent also in
modelling tornadoes and waterspouts. The work is an extension of our recent investigation
of buoyant vortices (1976, hereafter referred to as I), in which a numerical model was devel-
oped to study the dynamics and structure of a vortex core driven thermally from below,
with the particular aim of unravelling the close interplay between the force fields due to
rotation, pressure gradient, and buoyancy. Although not realistic in certain aspects, the
model contains the essential ingredients which are believed to lead to dust devils, i.e. strong
thermal heating from below in the presence of rotation, and our findings appear to provide
a useful basis for understanding observations of dust devil structure. We now go on to
consider what changes to the model would bring it closer to one for a dust devil. Gur main
emphasis will be on the choice of the outer radial boundary condition, which is especially
crucial 1o a satisfactory representation of the dust devil environment.

2. THE MODEL: PROTOTYPE AND VARIANTS

The numerical model described in I combines features of the laboratory vortex flows
studied by Barciton (1967) and Fitzgarrald (1973) and corresponds broadly with an experi-
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mentally realizable situation. The region of flow for which computations are performed is
cylindrical with radius R and height H and has its axis vertical. It is bounded by a rigid
(no slip} lower boundary and is constrained at the side by a thermally insulated, rigid,
impermeable upper portion together with a rotating, porous, lower portion with fixed
height 4, through which fluid with ambient temperature 7, may enter the cylinder, acquiring
rotation as it does so. The flow is assumed to be axisymmetric and is driven by maintaining
a circular portion of the lower boundary, with radius R,, at a fixed temperature T,, higher
than 7. Fluid is allowed to enter or leave the region normally through the upper boundary
at which level it is assumed that vertical heat transfer is by advection only.

The fluid has density p and temperature 7 and the diffusivities of momentum and heat,
Ky and Ky, are taken to be constant, and in this paper to be equal. The equations and
notation are as given in I; suffice it to say that velocity components (u, v, w) are referred to a
cylindrical coordinate system (r, 8, z), coaxial with the flow domain. With this notation,
the boundary conditions conforming with the description given above are displayed in
Fig. 1(a). The equations of motion are integrated from an initial state of no motion and
uniform temperature 7, until a steady vortex is obtained and in this paper, as in I, only
steady-state situations are discussed.
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Figure 1. Boundary conditions for the numerical experiments. (a) is for Expt. 1 which is regarded as the
prototype calculation and is identical to Expt. 2 of 1. {b) is for Expts. 2 to 10. In Expts. 2 to 7, v(R, 2) = V(z)
is prescribed for 0 < z < A; in Expts. 2,4,5,6 V(z)=V,; in Expt. 3, V(z)= V{1 —exp{—z/zp)} with
zofH==01; in Expt. 7, V(z)zV,{l—Hz{zﬂ)“}“* with zo/H = 0-1; in each case V, being a constant. In
Expts. 8, 9 and 10, the condition on #(R, z) for 0 < z < A is replaced with {(R, z) = ., a constant. In Expts.
5,9 and 10, free slip (8u/0z = 0, 6v/0z = 0} instead of no skip is imposed on the outer portion of z = 0: see text.

The flow depends on two main dimensionless parameters: a pseudo-Rayleigh number,
Ra = g(T,-T)R}|T K}, which characterizes the strength of buoyancy forces compared
with viscous forces, and a swirl parameter, Rt = (V [V )(R/R,), which is a measure of the
rotational constraint for a given level of thermal forcing and a given source radius; ¥, being
the tangential velocity of the screen, and V', a thermal velocity scale defined by V, =
{g(T,—~ T IRST,}*. The factor R/R, is included in the definition of Rt so that the latter is
unchanged if R is changed while keeping the circulation imposed at that radius constant
(see section 3). The other parameters have the form of aspect ratios: 4, = h/H, A, = R/H,
Ay = RJR.
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For reasons discussed in I, concentrated vortices will result only for a certain range of
values of Ra and Rt, and we chose there values for T,,T,, R, R, H, V., K); typical of the
laboratory experiments of Barcilon and Fitzgarrald, recognizing that there is inevitably a
source of uncertainty in the value ascribed to K.

Our aim in the present work is to model a dust devil more closely and we must seck a
more appropriate boundary condition at r = R. We must also use a more suitable set of
values for T.,...,Ky, but in doing this, we should like to use the same nondimensional
parameter values as in I to facilitate comparison of the present calculations with the earlier
ones. Fortunately, there appears to be a close dynamic similarity between the experimental
vortices and dust devils and by choosing the same dimensionless parameters as in Expt. 2
of I, we can obtain values for T,,. . ., K, which are broadly representative of a dust devil.
Thus, with Ra = 1-5x 107, Rt = 008, R/R = 0-5, R/{H = 0-3, we choose R, = 20m,
R=40m, H =133m, T, = 350K, T, = 300K, and obtain V, =023ms™ ", VR =
58x 107371, K,, = 0-:6m?s~!. These values lead to a mature vortex with a core radius of
3.3 m and a maximum azimuthal velocity, v,_.,,, = 1-6ms~'. Although v, istoosmall by a
factor of four to five for an intense dust devil, it may not be atypical of weak ones, and in
any case it corresponds to an angular rotation rate ¥,/R, at the ‘screen radius’, which is
only an order of magnitude larger than the Coriolis parameter in mid-latitudes. (A calcula-
tion with parameter values typical of a strong dust devil is discussed in section 4.) Again,
the value implied for K,,-does not seem unreasonable but we are aware of the limitations
arising from its use. We regard Expt. 2 of I as the prototype experiment in this paper and
refer to it here as Expt. 1.

The most obvious change in the radial boundary conditions must be to allow free flow
through the entire boundary. Moreover, the direction of flow must be determined by the
dynamics of the flow within the computational region. Accordingly, in all subsequent
experiments we take d(ur)/dr = 0 along the whole boundary r = R. Through continuity,
this implies w = 0 at the boundary but it does not seem to impose a severe constraint on
the flow, as confirmed by the solutions for different values of R (see section 3). Greater
difficulty is encountered in the choice of an appropriate swirling flow condition at r = R
as there appear to be a number of possibilities. Mathematically one could prescribe the
swirling velocity v, the vertical component of vorticity {, or a relation between the two.
Ultimately, the choice will depend on what information can be deduced from observations
of flow in the vicinity of a dust devil, but as such data have not yet been obtained, we
examine two boundary conditions which seem to have most physical relevance and compare
these. Thus, for inflowing air (1 < 0) we specify either v = V{(z) or { = [, a constant, and
for outgoing air (# > 0) we take d{/ér = 0. The last condition, together with d(ur)/0r = 0,
implies zero radial gradient of vorticity flux at r = R; i.e. vorticity is advected freely through
the side boundary of the computational domain without modification. If the vorticity just
inside the boundary is zero, this condition is equivalent to é(vr){or = 0 at r = R, which
implies that outgoing air conserves its angular momentum. However, in a vortical environ-
ment, radial changes in circulation are associated with radial gradients in angular momentum
and the restriction of angular momentum conservation on air entering or leaving through
r = R 15 too severe.

When { is prescribed instead of ¥(z) at r = R, the swirl parameter as defined above 1s
inappropriate and in such cases we choose Rt = { R/V;. However, values of this quantity
must not be used for comparison of experiments with different values of R, as discussed in
section 3.

To complete the boundary conditions at r = R we take T = T,, the ambient tempera-

ture, along the entire boundary. An alternative would be to take T = 7, for incoming air
and &(rT)/ér = 0 for outgoing air, implying that heat transport away from the region is by
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advection only, but it may be shown that these conditions are essentially equivalent as long
as the pseudo-Rayleigh number is sufficiently large; see Smith ez al (1975).

In the present study we discuss the results of a further series of nine experiments with
one of the radial boundary conditions given above, and in some cases with different sizes
of computational region to allow the effect of finite domain size on the solutions to be
assessed. In these cases we have found it necessary also to permit free slip on part of the
lower boundary so that direct comparisons can be made for different values of R, see later.
The boundary conditions for these nine experiments are displayed in Fig. 1(b) for comparison
with Expt. 1. Specification differences between the experiments are given in Table 1.

TABLE 1. SPECIFICATION DIFFERENCES FOR THE NUMERICAL EXPERIMENTS AND AMPLIFICATION FACTOR A AS
CALCULATED FROM THE STEADY VORTEX SOLUTIONS, IN EXPTS. 1 10 7, A = (Vnax/Pmax/(Ve/ R); IN EXPTS. 8 TO 10,
A= (Vmex!Tmax) 3o’ SEE TEXT

R H Swirl condition at Velocity condition Amplification
Expt. (m) {m) r=R when u<0 at z==0 factor, A

! 40 133 V=023ms™*! no slip 83

2 40 133 V=023ms"! no slip 86

3 40 133 V=023 —e %'yms~ no slip 91

4 80 133 V—=0115ms™! no slip 72

5 80 133 V=0115ms™" no slip 0<r<40m 82
free shp 40<r<80m

6 40 200 F=023Ims"! no slip 86

0-23 L .

7 40 200 V 1+(z}25)4m5 no shp 84

8 40 133 t,=12x10"2%s"? no slip 102

9 &0 133 o= 12%x 10" %! no slip 0<r<40m 94
free slip 40 <r < 80m

i0 120 133 = 1"2x 1021 no slip 0 <r<40m 87

free slip 40<r<120m

3. DISCUSSION

A description of the basic dynamics of the flows under study is given in I, section 4,
and we shall aim here to deduce the differences between these flows and to identify the
reasons for these differences. In comparing the flows, a useful measure of vortex strength
is the amplification factor A4, defined as (0, /7ma)/(V./R), which represents the ratio of
angular retation rate at the radius of maximum azimuthal velocity to that at the lateral
boundary of the flow domain. Values obtained for A4 for the various experiments are given
in Table 1.

The isotherms, streamlines, isotachs of swirling velocity and isobars of dynamic
pressure for Expts. | and 2 are shown in Figs. 2 and 3 respectively. It is evident that the
principal differences between these two flows are confined to the neighbourhood of r = R.
When the flow is allowed to select its own height of inflow, we see that inflow occurs over
the whole radial boundary but there is little change in detailed vortex structure and only
a very small change in amplification: 4 = 86 compared with 83 in Expt. 1,

In Expt. 3 the azimuthal velocity at r = R falls smoothly from a constant value ¥,
far above the lower boundary to zero at the boundary itself, instead of remaining constant
as in Expt. 2. This sort of profile is more realistic in the atmosphere where the swirling
velocity component of the vortex environment about the vortex axis must reduce to zero at the
ground. Again, the calculation shows there is little change in flow field structure but the
vortex strength is increased by about 6%, Thus, although rings of air entering through the
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Figure 2. (a) Isotherms (labelled in K); (b) streamlines (contour spacing 4m?s™'}); (¢} swirling velocity
isotachs (spacing 0-2ms~"); (d) isobars (spacing 0-2Zmb), for Expt. 1.
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Figure 3. (a) Isotherms; (b) streamlines; (¢) swirling velocity isotachs; (d) 1sobars, for Expt. 2: spacing
as in Fig. 2.

side boundary in the lower levels do so with reduced angular momentum, they are able to
penetrate a little farther towards the axis before the local centrifugal force and radial
pressure gradient achieve balance to prevent subsequent infiow. Accordingly, the increased
value for A is associated with a slightly higher swirl velocity maximum attained at a slightly
smaller radius.

In seeking to model numerically a Iaterally unconstrained flow such as a dust devil, we

must ensure that the boundary conditions at r = R do not unduly overconstrain the flow
in the sense that a different choice of R leads to a radically different flow, qualitatively or
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quantitatively or both. So, in Expt. 4 we repeat Expt. 2 with the value of R doubled from
40 to 80m. With only this change we would not expect to achieve comparability with
Expt. 2 since rings of air which enter through the more distant radial boundary have twice
the angular momentum of their counterparts. We must therefore double R and halve V,
so that the circulation about the perimeter of the flow at any height, and hence the swirl
parameter Rz, remain the same. Even so, the vortex which results is somewhat weaker than
in Expt. 2, with 4 = 72 as compared with 86, and this is reflected in the flow fields (not
shown) which indicate also a slightly broader vortex core, although there is no qualitative
change in flow structure. This result is not, however, a reflection of overconstraint at r = R
but is largely due to the additional torque exerted on the lower boundary which is quadruple
the area of that in Expt. 2. This can be seen by comparing Expt. 2 with Expt. 5, the latter
being a rerun of Expt. 4 but with the condition of free slip (Cu/éz = 0, év/dz = 0, w = Q)
on the lower boundary for 40 < r < 80m. The vortices are now closely similar both
qualitatively and quantitatively; compare Figs. 4(a) and 4(b) with Figs. 3(b) and 3(c)
respectively; and in Expt. 5 the amplification factor is 82 which is close to that in Expt. 2.
Furthermore, the closeness of the streamline patterns near r = 40 m in the two calculations
suggests that the condition w = 0 at the lateral boundary of the computational domain
does not unduly overconstrain the flow.
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Figure 4. (a) Streamlines; (b) swirling velocity 1sotachs, for Expt. 5. spacing as in Fig. 2,

We wish to emphasize that the calculation with free slip on part of the lower boundary
is not conceived as a further step towards physical realism, which it clearly 1s not, but 18
carried out to enable the effect of the additional torque to be estimated. However, it 1s
opportune to point out that in any atmospheric vortex model, the size of the computational
region will inevitably be a parameter in the calculation of vortex strength as it determines the

area of the lower boundary available for exerting torque.
Experiment 6 is a repeat of Expt. 2 with the height of the computational region extended

by a factor of 1-5 and provides a means of assessing the upper boundary conditions. As can
be seen by comparing Figs. 5(a), (b) with Figs. 3(b), (c), respectively, the velocity fields
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Figure 5. (a) Streamlines; (b) swirling velocity isotachs, for Expt, 6: (¢) streamlines; (d) swirling velocity
isotachs for Expt. 7: spacing as in Fig, 2.

in the two experiments are almost identical in their region of overlap; moreover, the
amplification factor, which is quite sensitive to small changes in the swirling velocity field,
is the same in each case. We may therefore conclude that the upper boundary conditions
create little unintended constraint on free flow through that boundary.

It is now interesting to compare Expts. 6 and 7 which are identical except that in the
latter the swirling velocity at r = R is taken to be ¥(z) = V,/{1 +(z/25)*} for incoming air,
rather than simply a constant ¥, as in the former case (z in metres). Thus, in Expt. 7 we
explore the effect on vortex dynamics of having a field of rotation which is concentrated
primarily at low levels. In this situation, the streamlines show a region of outflow through
the side boundary at intermediate heights, sandwiched between regions of inflow, see Fig.
3{c). This feature may be given a physical interpretation as follows. Since the imposed
circulation at r = R decreases sharply with height, rings of air which enter at lower levels
and are advected upwards find themselves in an environment where the circulation decreases
with increasing radius. It appears that at intermediate heights and near the perimeter of the
computational domain, the resulting excess centrifugal force on the ring is sufficient to
overcome the local, inward, radial pressure gradient causing an outward drift of air.
However, at larger heights, the rotational constraints are reduced and the outward drift
1s reversed owing to the continued buoyant acceleration of the flow and the entrainment
it produces.

At present there are few detailed observational data on the wind fields of a dust devil
environment; in particular, the vertical extent of the background rotation is not known.

However, our calculations suggest that if the rotation source is concentrated at low levels,
there may be evidence of outflow, or of centrifugal instability, at intermediate heights.
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We now go on to consider the choice of swirling flow condition at r = R, and its
implications. In ali the previous experiments, the swirling velocity is specified at this radius
and since inflowing air approximately conserves its angular momentum as it enters through
the side boundary, the radial gradient of circulation is very nearly zero and there is negligible
inward advection of verticaily oriented vorticity. Thus, vertically oriented vortex lines along
the vortex core must emanate from the ground boundary layer region where they are roughly
horizontal. Moreover, in the outer part of the vortex, the swirling flow is approximately
irrotational with azimuthal velocity decaying as 1/r. Whilst Sinclair’s observations show that
the swirling velocity field in a dust devil does approximate this type of behaviour (Sinclair
1973, p. 1609), it is unlikely that the dust devil environment is entirely devoid of vertically
orientated vorticity and it is of considerable interest to compare Expt. 2 with Expt. 8, in
which the vertical vorticity {, is prescribed for inflowing air at r = R, instead of the swirling
velocity. To permit quantitative comparison between these experiments, we take [, =
2V /R.

The streamlines and isotachs of swirling velocity for Expt. 8 are shown in Figs. 6(a)
and 7(a) respectively. It is clear that no new flow features are present when [, 1s prescribed
although the vortex is stronger, with amplification factor, defined in this case by
(Vanl” a3 > €qual to 102 as compared with 86 in Expt. 2. Nevertheless, the vorticity
fields differ as can be seen by comparing Figs. 8(a) and 8(b), which show contours of equal
circulation, rv, for Expts. 2 and 8 respectively. In Expt. 2 the circulation decreases with
decreasing radius in all parts of the flow although circulation gradients outside the vortex
core are relatively small. This is consistent with there being a sink of angular momentum
at the lower boundary. In Expt. 8, however, there is an extensive region of flow where the
circulation increases with decreasing radius adjacent to the core. This increase is due to the
vertical stretching of ambient vorticity as converging air accelerates upwards but it should
be emphasized that radial circulation gradients are not especially large and the swirling
velocity outside the core does not depart significantly from a 1/r profile.

Without further guidance from observations, it is difficult to argue a preference for
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Figure 6. Streamlines for: (a) Expt. 8; (b) Expt. $: spacing 4m?s~1.
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Figure 7. Swirling velocity isotachs for: (a) Expt. 8; (b) Expt, 9: spacing 0-2ms~ !,

either of the two swirling conditions studied. Even so, it is important to know what impli-
cations a particular choice will have on the ensuing dynamics and to be aware of any
changes which might arise if the radius of the computational domain is extended. We have
already studied the latter question in relation to Expt. 2 and have seen that if R is increased
and the circulation imposed at R remains fixed, the vortices obtained are comparable in
structure but the extra torque at the lower boundary reduces the vortex strength. However,
in the case of Expt. §, it is not immediately clear how £, should be changed as R is changed
to achieve the same rotational constraint. If (8{/0r),_x is zero, or sufficiently small, at
heights where {, is prescribed, the boundary condition {(R, z) = {, is equivalent, or approxi-
mately equivalent, to the specification of solid-body rotation with angular velocity 1L, at
that radius. Hence if we change R, we must presumably keep {, constant. We would not
then expect the flow outside the core to be similar for all values of R, even with the boundary
conditions we have chosen at this radius, since with solid-body rotation at large radial
distances and a given strength of forcing, there is always some radial length scale R, beyond
which the flow will be largely unaffected by the presence of the vortex. This is well demon-
strated in the laboratory experiments of Turner (1966) where vortices are generated in a
rotating tank of water with vertical axis by releasing a steady stream of air bubbles along the
axis of rotation. The rising bubbles cause a meridional circulation in the water, strong
enough to produce a concentrated vortex along the rotation axis but too weak to influence
fluid near the sides of the container. In this situation, the circulation is terminated by a free
shear layer and hence R, is smaller than the container radius. -

If in our experiments R < R,, we might expect broad similarity between flows for
different values of R and we have therefore repeated Expt. 8 with R increased twofold
(Expt. 9) and threefold (Expt. 10) to explore this possibility. To permit quantitative com-
parison of these last two experiments with Expt. § we have again taken the condition of
free slip on the lower boundary for r > 40m as in Expt. 5.
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Firstly, we note that the calculations for Expts. 8, 9 and 10 show that { '(8(/0r), - is
small (maximum value about 003 m ™ ') at heights where £, is prescribed so that the boundary
condition (R, z) = {, is closely equivalent to the specification of solid-body rotation with
angular velocity 3£, at the radius. It may help to understand this result if we consider the
quation for axial vorticity which together with the boundary conditions at r = R gives

Y— = —— — P (:"" u@a—w fr = R
or r 6r Or|°  @zor ar==s

when { (R, z) is prescribed. Hence, ignoring diffusion which is relatively small in our experi-
ments, radial gradients of axial vorticity near »r = R are produced by the tilting of radial
vorticity by radial gradients of vertical velocity. It is evident from Figs. 6 and 7 that the
largest values of dv/éz occur near the lower boundary, where the streamlines are more
horizontal and hence values of dw/dr are small, whereas values of ¢v/0z are small at larger
heights where dw/dr is appreciable; for this reason, the term (3v/0z){(0w/0r),_ g in the above
equation remains uniformly small.

The streamlines and isotachs of swirling velocity for Expt. 9 are shown in Figs. 6(b)
and 7(b) respectively. It is clear that the vortices in Expts. 8 and 9 are comparable in structure

JR
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Figure 8. Isopleths of circulation rv for: (a) Expt. 2; (b) Expt. 8; (¢) Expt. 9: spacing 0-dm3s~ 1.

and the patterns of circulation are broadly similar (cf. Figs. 8(b) and 8(c)); this is also true
for Expt. 10 (velocity fields not shown). However, even when the extra ground torque
has been compensated for by taking the condition of free slip on z = 0 for r > 40m, the
amplification factor decreases to some degree as R increases: i.e. 4 = 102, 94 and 87 in
Expts. 8, 9 and 10, respectively.

4. STRONG DUST DEVIL SOLUTIONS

As discussed in section 2, our choice of nondimensional parameters (principally Ra
and R¢) was made to allow comparison of the present experiments with those in I, but it
was seen that, with suitable geometrical scales, these parameters lead to a rather weak dust
devil vortex. Recently our computer facilities have improved, enabling us to explore
parameter values a little further and we have now also found values which correspond

with dust devils of moderate strength.
If we take 7, = 300K, R = 40m, H = 133m as before and take 7, = 330K with
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R, = 40m (i.e. heating over the entire lower boundary), Ky = 02m?s™! and {, =
8x 1072~ ! we obtain a two-celled vortex with downflow on the whole axis: a maximum
swirling velocity of 7-9ms ™' occurring at 6-1m radius; a maximum vertical velocity
Waax = 1 ms™', a maximum downflow velocity w,,, = 2-9ms~’', an amplification factor
of 30 and a pressure drop Ap across the core at ground level equal to 2-1 mb. Except for
the values of K, data for which have not been obtained, these values are comparable with
the detailled measurements for dust devil No. 1 made by Sinclair although the vortex here
is a little weaker and marginalily broader and has circulation v, 7., = 48 m?*s ™!, compared
with about 61 m*s™" for dust devil No. 1.

A reduction in {, to 5x 107 s~ " decreases the vortex strength and the radius at which
the maximum swirl is attained; now v,,,, = 6:0ms ™ 'and s, = 51 m, whereas the amptifi-
cation factor 1s increased to 42. Also, w,,, reduces to 7-1ms™ ", w_. decreases to 2:5ms™ !
but the pressure drop, now 2:0mb, is barely changed. These effects are anticipated from
the discussion given in [, section 4.

Finally, since observations provide little guidance in the choice of K,,, we have repeated
the above calculations with Ky = 0-4m?s™ ' to assess their sensitivity to the selected
diffusivity. In each case v,,,,, 7., Ap and even A are virtually unchanged, suggesting that
the dynamical factors which regulate these aspects of the flow are essentially inviscid.
However, again as anticipated, an increase in K, increases the axial decay and radial spread
of the swirling velocity field which implies (see I, Eq. (5)) a larger adverse, axial pressure
gradient. Hence w,,, is reduced and w,;, increased; when {, = 8x 107 %7 w =
87ms™! and wy, = 32ms™'; when {, = 5x107%" ', w  =69ms”! and w,,, =
2:8ms ™.

5. CONCLUSION

In this paper and its predecessor, we are able to account for the principal dynamical
features of dust devils {excluding vortex breakdown) in terms of a numerical model of a
thermally driven vortex. In I, the calculations are performed for a laboratory flow con-
figuration, but it ¢s argued that the model contains the two main ingredients of a dust devil
(1.e. strong thermal forcing from below in the presence of rotation) and therefore that the
strong dynamical coupiing between the axial and azimuthal flow fields in the model, which
the calculations help to elucidate, are essentially the same in dust devils.

Here, we have sought to model a dust devil more closely, concentrating mainly on a
more realistic representation of its environment by the choice of an appropriate radial
boundary condition. As part of this we take the vertical velocity to be zero: this is only a
weak constraint on the meridional circulation provided that the boundary is sufficiently
far from the axis, and it also allows the flow itself to determine the height over which inflow
occurs. The condition is completed by prescribing the ambient air temperature and a
condition on the swirling velocity field. As regards the latter, the mathematical problem is
well-posed when the swirling velocity, or the axial component of vorticity or a relationship
between the two, is prescribed. However, it is not possible to select the most physically
realistic of these conditions on the basis of currently available data and we have therefore
compared calculations in which either the swirling velocity or the axial vorticity component
1s specified at levels where inflow occurs. At the other levels the radial gradient of axial
vorticity 1s taken to be zero. It is shown that apart from a modest difference in vortex
strength, and from small differences in the pattern of circulation outside the vortex core,
the two flows are closely similar. In particular, the dynamical constraints on the vortex core

are insensitive to the exact nature of the ambient source of rotation. a fact which confirms
the applicability to dust devils of the discussion given in I.
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Finally, we have obtained vortex solutions which are comparable both qualitatively
and quantitatively with observed data for a moderately intense dust devil and have shown
that these solutions are not especially sensitive to the value taken for the eddy diffusivities.

Much of the foregoing discussion is relevant to other types of sub-synoptic-scale
vortices including tornadoes and waterspouts and should prove helpful in the formulation
of models for these. It should also serve as useful guidance in the design of future observa-
tional studies of dust devils and their immediate environment.
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