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SUMMARY

This paper describes a series of numerical experiments designed to explore the close interplay between
the rotational, the pressure gradient, and the buoyancy, force fields in concentrated vortex flows driven
thermally by heating from below. The calculations are motivated by a desire to understand the dynamics
of dust-devils and to provide a theoretical framework in terms of which both past and future observations

of these vortices may be interpreted.

In the model, a vortex is generated along the vertical axis of a cylindrical region of fluid bounded by a
rigid (no-slip) lower boundary, and a sidewall consisting of a rigid, impermeable upper portion and a _
totating, porous, lower portion through which fluid at ambient temperature enters the cylinder and acquires
rotation, The flow is driven by maintaining a circular portion of the lower boundary at a fixed temperature
above ambient and fluid is allowed to enter or leave the cylinder normally through the upper boundary.
For a cylinder of given size, the flow behaviour depends on the magnitudes of two nondimensional para-
meters which characterize the strength of the thermal forcing and of the imposed rotation, According to the
sizes of these, flows with axial downflow on part or all of the axis of rotation are possible and, in some
cases, a closed cell of reversed flow is possible. In each case it is possible to give a complete description of
the force field balance which combines to produce the particular flow pattern.

The calculations go a long way to providing an understanding of the main features of dust-devils as
observed in a careful and detailed study by Sinclair and corroborate well with the experimental results of
Fitzgarraid in relation to taboratory vortices. In particular, we show how ratationally induced axial pressure
gradients can supplement buoyancy forces in accelerating the vertical low in dust-devils as appears necessary
to explain the large vertical accelerations observed near the ground in these vortices.

1. INTRODUCTION

Numerical models continue to play a central role in studies of vortex dynamics; a field in
which analytica! techniques have proved to be severely limited, and laboratory experiments
and observational programmes have been restricted, either by difficulties in measuring the
fully three-dimensional flow field patterns, the interpretation of flow visualization, or
simply access as in the case of naturally occurring vortices such as dust-devils,
waterspouts and tornadoes. Numerical studies, in contrast, can provide complete informa-
tion on the patterns of flow and force fields which occur in vortices during all stages of their
lifetimes. Information in such detail is essential to enable one to unravel the intimate coup-
ling which is known to exist between the axial and azimuthal flow fields of a vortex; a
coupling which is greatly augmented by the presence of a non-yielding boundary normal to
a vortex core.

In this paper we present the results of some numerical experiments with thermally
driven vortices with the particular view to understanding the mechanics of dust-devils; a
broad range of atmospheric vortices which occur on hot days over dry terrain,

Although the more intense dust-devils occur predominantly in the desert regions of the
world and particularly in the summer months when insolation is at a maximum, weaker
types occur in other areas, even in the temperate latitudes, on hot summer days. There
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is little doubt that these vortices are generated by the amplification of locally enhanced
sources of ambient vorticity by thermals resulting from strong ground heating. As the name
implies, those dust-devils which can be seen are made visible by dust particles or other
debris which are picked up at the ground and carried aloft in the thermal current, but it is
likely that in many cases suitable visualization particles are absent, for example, Businger has
inferred the presence of these vortices from tuft patterns produced over a wheat field (see
Morton 1966), and dust-devils may be more common than is generally realized. Moreover, it
is quite possible that they play an important role in the transfer of heat and momentum in the
lower layers of the atmosphere in conditions where lapse rates are highly super-adiabatic.

As a result of extensive observational programmes conducted in the desert regions of
Arizona (Sinclair 1964, 1965, 1969, 1973} and in the Mojave Desert (Ryan and Carroll 1970;
Carroll and Ryan 1970; Ryan 1972) valuable data on dust-devils have been collected and
these, together with some measurements by Kaimel and Businger (1970), have enabled the
principal features of these vortices to be identified, at least in their lowest levels. At the same
time the observations raise a number of questions which we shall consider later. In view of
the erudite account of earlier observational studies (including preliminary measurements
made by Sinclair 1964, 1965) and of other aspects of dust-devils contained in the review
article by Morton (1966), only a brief description is needed here.

Dust-devils range considerably in size, from a metre or so in diameter and height to
tens of metres in diameter and several hundred metres in visible height, but thermals
apparently associated with dust-devils have been identified by glider pilots at heights up to
4km (Sinclair 1964). Maximum swirling velocities are typically of order 10ms™"! and,
although there are a few anomalous results, the majority of census studies indicate that the
sense of rotation is random, as one would expect from scale considerations (see Morton
p. 151 and Carroll and Ryan). Maximum vertical velocities are comparable with maximum
swirling velocities (consistent with the predictions of Morton p. 178, based on an order of
magnitude analysis of vortex core motions) and are usually attained quite close to the
ground, often within a metre or two of it, but both Kaimel and Businger and Sinclair (1973)
note that buoyancy forces alone cannot account for such large vertical accelerations.
{Buoyancy force is defined relative to the local ambient temperature in the usual manner.)
In that case, dynamic pressure gradients must assume an important role in driving the
flow, but it is known that these are intimarely connected with the swirling flow field and
calculations are necessary to determine their contribution to the dynamics. In addition to
furnishing such information, we believe our calculations also provide a framework for
understanding the observations of vertical flow structure. In many cases these indicate the
existence of a central core with downflow along the axis; in other cases there is considerably
reduced upflow along the axis, possibly with downflow at greater heights, and flow stagna-
tion at some point on the axis. In all cases the central core is surrounded by a region of
vigorous upflow and swirl. Temperature data exhibit a warm core structure with maximum
temperatures typically 3-5 to 5K above ambient at heights of about 2m, and 2 to 4K in
the height range 5 to 10m. In some cases the warm air near the dust-devil centre is in the
mean of order (-5 to 1-0K cooler than the surrounding core (Sinclair 1973). The above
summary is based primarily on measurements made in the lower levels of dust-devils;
below 9-5m in the case of Sinclair’s data and below 22:5m in the observation reported by
Kaimel and Businger. Measurements of. flow fields at greater heights are not available but
Ryan and Carrofl {1970) have obtained temperature data at higher levels using an aircraft.

Theoretical studies of dust-devil type vortices have been made by Barcilon (1967) and
Logan (1971) although both these analyses are limited in application and neither give
information concerning core structure. Barcilon employs 4 momentum integral technique
to represent the core flow and uses an entrainment assumption to relate the mean inflow at
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a given height to the mean vertical velocity at that height, as in non-rotating plume models
(Morton et al. 1956). However, the entrainment constant has not been determined for
swirling flows, and furthermore it is questionable whether such a formulation is applicable
when significant swirl is present, as this greatly inhibits the entrainment. Under these cir-
cumstances it is not even clear to what degree the mean vertical velocity is relevant. Logan
assumes a given profile of azimuthal velocity above the terminating ground boundary layer
of the vortex and uses a momentum integral technique to calculate the boundary layer flow
and, in particular, the radial distribution of vertical flow just above the boundary layer,
compatible with the specified profile of swirl. The method relies, amongst other things, on a
suitable formulation for the boundary layer at large radial distances and in the case of
‘long-thin’ vortices such as dust-devils, waterspouts and tornadoes, the flow at radial
distances greater than a few core diameters is not well known but almost certainly has the
character of flow towards a sink, rather than a shallow, viscous layer exhibiting gradual
radial development. Indeed, this even seems to be the case in certain contained vortices as
suggested by the numerical study of boundary effects in vortex flows by Bode er al. (1975).
Thus it is difficult to determine the extent to which Logan’s formulation is appropriate.
Thermally driven vortices have also been studied in the laboratory and some of the
findings are pertinent to dust-devils and to the present calculations. Emmons and Ying
(1967) use a pool of acetone, burning in air, as a heat source and rotation is supplied by a
rotating screen with its axis vertical and centred above the pool. In this arrangement, air
which converges in low levels towards the fire acquires angular momentum as it enters the
screen. Since angular momentum is approximately conserved (there is a small frictional loss
due to the torque at the lower boundary), the azimuthal velocity of the air increases with
decreasing radius and a vortex is formed as this swirling air is convected into the plume above
the fire. Measurements are made of temperature profiles across the vortex, of the radial
spread with height and of the acetone burning rate, for a range of screen rotation rates.
One of the principal findings is that turbulent mixing is suppressed in the core as the rota-
tional motion increases in strength and this reduced mixing can deprive the fuel vapour of
oxygen needed for combustion to such an extent as to substantially increase the height of
the acetone flame. Barcilon uses the same apparatus as Emmons and Ying but instead of the
pool fire he situates a heated plate over most of the lower boundary to provide the field of
buoyancy. Flow visualization is achieved by a small smoke generator located on the lower
boundary at the screen axis. Barcilon gives a brief description of the visual behaviour of the
vortex as the screen rotation rate is increased, but does not give any quantitative measure-
ments of the flow fields. A more comprehensive series of laboratory experiments are repor-
ted by Fitzgarrald (1973) and again the working fluid used is air. Buoyancy is also produced
by heating the lower boundary but swirl is imparted to inflowing air by a series of vanes
situated around the perimeter of the radial boundary. Two angular settings of the vanes
were available allowing a change in imposed swirl strength for a given plate temperature but
in this arrangement it is not possible in general to vary the plate temperature and imposed
swirl strength independently. However, Fitzgarrald found that flow visualization and optical
velocity measurements were much simpler in this configuration. Data are presented for a
range of plate temperatures and hence inflow angles (for a given vane setting the swirl
strength increases with the radial inflow speed which in turn is an increasing function of
plate temperature: Fitzgarrald defines inflow angle as the inverse tangent of mean azimuthal
velocity divided by mean inflow velocity at the vane radius where averages are taken over
the lowest one-third of the apparatus height and over eight-minute intervals) and five
parameter regimes are identified according to the strength of rotation for a given plate
temperature. For small inflow angles, and hence small rotation rates, no significant vortex
occurs. As the rotation rate is increased, a one-cell vortex is observed; there is no stagnation



794 R. K. SMITH and L. M. LESLIE

point on the axis and the flow is upwards at any radius. A further increase in rotation rate
results in a two-cell vortex with a much stronger circulation and the motion on the axis is
either positive and very small, or slightly negative. Vortex breakdown is common in these
situations. A continued increase in rotation results in a strong two-cell vortex with sub-
stantial axial downflow and ultimately, when the rotation is very large, the flow becomes one
of solid body rotation with an extensive region of downflow at the centre and no concen-
trated vortex is formed. The present calculations are in concordance with these results,

.2. THE MODEL

The numerical model combines various features of the laboratory simulations described
above and corresponds broadly with an experimentally realizable situation. It is portrayed
in Fig. 1. The computational region is ¢ylindrical with radius R and depth A and has its
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Figure 1. Sketch of flow configuration in the model.

axis vertical. It is bounded by a rigid (no-slip) lower boundary and a sidewall consisting of
an insulated, rigid, impermeable upper portion together with a rotating, porous, lower
portion with depth A through which fluid with ambient temperature 7, may enter the cylin-
der, acquiring rotation as it does so. The flow is assumed to be axisymmetric and is driven by
maintaining a circular portion of the lower boundary, with radius R,, at a fixed temperature
T, higher than T,. Fluid is allowed to enter or leave the region normaily through the upper
boundary and it is assumed that advection of-heat dominates transfer due to diffusion at
this level.

+ The fluid has density p and temperature T and the diffusivities of momentum and heat,
Ky and Ky, are taken to be constant and in most of the calculations are taken to be equal.
In certain parameter regimes, and depending on the physical characteristics of the working
fluid, the flow may be either laminar or turbulent. In our calculations we explore a range of
parameters as close as possible to the conditions of Barcilon’s experiments and with values
for turbulent diffusivities chosen as representatively as possible, We also assume air as the
working fluid.

The equations of momentum (assuming the Boussinesq approximation is valid), heat,
continuity and state are,

D 1 T-T

D—ltl AL + ——fg + KyV?u . . (1)
bT
3 = KaVT . . . . )
Vuo=0 . . . . . . (3)

and pT =.peTe . - M * - * (4)
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where w = (4,0, w) Is the velocity referred to a cylindrical coordinate system (r,@,z),
coaxial with the computational region, g = (0,0,-g)} is the gravitational acceleration, p is
the dynamic pressure and p, is the ambient density, assumed uniform. The computational
domain is the region 0 £ r € R; 0 £ 0 < 2n; 0 € z £ H. Axial symmetry, 8/66 = 0, is
assumed. -
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Figure 2. Schematic representation of the boundary conditions used in the calculations.

The boundary conditions conforming with the description given above are displayed in
Fig. 2; they are as follows: '

=T +AT): 0<r<R,
Onz = Q: u=0, p=0, w=0, 'T={TS( eTAT) Ok,
T. R, < r<R,
Onz=H: u=0, opfdz=0, dw/oz =0, 8T[dz =0,
Onr = 0: u=0, =0, dw/dr=0, 8T/dr =0,
for0g z < h: durfor=0, v=V, w=0, T=T,
Onr=R:
for h€z€sHiu=0, v=0, w=0, éT/ér =0.

These conditions are not all independent. )
The principal nondimensional flow parameters are, a pseudo-Rayleigh number:

Re=97 k2
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which characterizes the strength of buoyancy forces compared with viscous forces, and a

swirl parameter:
Ri — V.R ATR -t
- Rs g T § s

[

which is a measure of the rotational constraint for a given level of thermal forcing and a
given source radius (N.B. In this definition we have used a swirling velocity scale V_,R/R,
appropriate to the source radius, obtained on the hypothetical assumption of angular
momentum conservation in the low level inflow).

The other parameters include a pseudo Prandtl number Pr = K/K,; (which is 51mply
equal to the Prandtl number in the usual sense if the flow is laminar), and three aspect
raiios: A, = hf{H, A, = R/H, A3 = R,/R. Our primary goal is to explore the types of flow
which occur for different values of Ra and R, keeping other parameters fixed. However,
some experimentation involving changes of one of K,,, H, A, keeping all other quantities
fixed, contributes to a fuller understanding of the vortex dynamics and helps one 1o assess
the relevance of the model to other vortex flows, in particular dust-devils. -

The details of the numerical method of sclution, which is very similar to that used by
Leslie (1971), are given briefly in an appendix. In short, the equations of motion and boun-
dary conditions given above are reduced 1o a form suitable for numerical integration and
the calculations are started with the flow in an initially quiescent state at ambient tempera-
ture. The heat source and rotating screen are ‘switched on’ at the initial instant and the
integrations are carried out until a steady state is attained. The results we describe relate
entirely to the steady-state fields.

3. PARAMETER VALUES FOR THE EXPERIMENTS

For definiteness, we base our selection of the flow parameters broadly on the laboratory
experiments of Barcilon (1967} and Fitzgarrald (1973) in which air is the working fluid.
Thus, for the two principal experiments, | and 2, the flow is defined by the values: & =
100 cm, = 30cm, R, = 15cm, AT =20K or 30K, T, = 300K, V = 1-57cms™!
(equwalem 10 half a screen revolution per minute) and Ky, K; = 'Scm?s™ 1, Obviously, if
one's intention is to compare an actual laboratory experiment with the corresponding
calculation, the values chosen for K, and K, (which are arbitrarily taken to be about 15
times the molecular viscosity for air at room temperature} are arguable although they are
probably reasonable to an order of magnitude. However, this ever-present difficulty of
choosing appropriate values for turbulent diffusivities in ‘ K-formuiations’ need not concern
“us unduly here, since precise values are not immediately relevant to the type of information
we seek from the calculations (see section 4). Subsidiary experiments 3 to 6, based on
experiment | with one change, are also discussed ; the changes being respectively: a doubling

TABLE 1

Experiment | 23 4 5 6
AT(K) 20 30 20 20 20 20
V.(ems =" 1-57 157 314 15T 157 1-57
Ra ~108 ~Fx 105 ~10° ~10° w108 ~108
Rt 010 008 020 010 010 010
Pr i i i 05 I i
Ax 03 03 03 03 05 03
A, 03 03 03 03 03 02

A 58 83 41 61 64 58
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of Q, the angular velocity of the screen; a halving of K, ; a halving of &; and an increase of
H by 509,

The parameter values for the six experiments are listed in Table 1. Also listed in this
vmax/rmax
VR
cation of the imposed rotation. In this expression, v,,, is the maximum swirling velocity
attained in the flow and r,,,, is the radius at which this occurs. The results are dlscussed

below.

. table are values for the derived quantity 4 = , which is a measure of the amplifi-

4. DiIscuUsSION

An essential feature of all the flows studied is a region of warm air above the source
which gives rise to a locally reduced pressure along the axis and (unless the screen rotates
too rapidly) draws fluid inwards through the screen. As a ring of fluid converges towards
the axis, it approximately conserves its angular momentum (unless viscous forces are
everywhere predominant) and spins faster. Thus the centrifugal force it experiences increases.
As is well known (see e.g. Morton) a concentrated vortex will form only if, for a given
heating strength, the angular velocity Q lies within a certain range of values. If Q is too
small, centrifugal forces never exceed a small fraction of the local radial pressure gradient
and the flow has essentially the character of a thermal plume, modified only slightly by
rotation. However, if Q is very large, inflowing fluid may travel only a small radial distance
before the centrifugal force is sufficient to balance the radial pressure gradient, or in the
extreme case, balance may be impossible and the screen then acts as a centrifugal pump.
For a range of intermediate values of 2, approximate balance between radial forces is
attained at smail radii; rings of fluid then attain large rates of rotation"compared with that
of the screen and are advected with the vertical fiow to form a concentrated vortex core.
The close balance between radial forces permits only weak radial motion along most of the
core, but adjacent to the lower boundary centrifugal forces are substantially reduced by
frictional effects leaving a net inwards pressure gradient. Thus most of the radial mass
flux occurs in a shallow friction layer at the base of the vortex. Moreover, the radial dis-
tribution of this flux, and hence by continuity the radial distribution of vertical motion just
above the friction layer, is determined by the radial profile of azimuthal velocity at this
level. In certain cases the radial inflow may be completely expelled as upflow at a finite
distance from the axis: these cases correspond with two-celled vortices having downflow on
the entire axis. ‘

Clearly the boundary layer dynamics exerts a strong constraint on the vortex structure
by providing a coupling between the azimuthal and axial flow fields at low levels. But this
is not the only coupling between these two flow fields as can be seen as follows. Above the
boundary layer, the equatlon expressing approx:mate radial force balance may be inte-
grated across the vortex to give

PR, 2)— pi0,z} = p.[ (@3 )rydr. . o . %
0 ,

If p(R, 2} is appreciably uniform, as is the case over most of the flow excluding the source
region (see Fig. 3), we see that a change in the azimuthal velocity v{r,z) with height is
associated in general with an axial pressure gradient. Indeed, if the swirling velocity de-
creases with height and/or if the profile spreads out so that the larger velocities are displaced
to larger radii, an adverse axial pressure gradient is induced. On the other hand, if the
swirling flow increases with height, as it must do just above the ground, a favourable axial
pressure gradient tendency occurs. This coupling plays a central role in vortex dynamics
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Figure 3. Comparison of steady state isotherms and isotachs of swirling velecity in experiments | and 2:
(a) isotherms, AT = 20K ; (b) isotherms, AT = 30K (c) v isotachs, AT = 20K; (d) »isotachs, AT = 30K.

and provides a basis for understanding not only the range of flows which occur in our

calculations, but also many of the observations on laboratory and atmospheric vortices,
including dust-devils.

The above ideas are not new and are discussed by Meorton, although their significance

does not seem to be widely appreciated in the literature. It is particularly interesting to see

" how they relate to thermally driven vortices, and that is one of the purposes of our study.

The interplay between buoyancy forces and axially induced pressure fields is brought out

!

i

@ by ) ()

Figure 4. Comparison of steady state streamline patterns and contours of vertical force in experiments
1 and 2:
{a) streamlines, AT = 20K (b) iso-F curves, AT = 20K;
(c) streamlines, AT = 30K; (d) iso-F curves, AT = 30K
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clearly in a comparison between experiments | and 2 (see Figs. 3-5) which both exemplify a
concentrated vortex fiow (cf. values of A in Table I).

Fig. 3 compares the isotherms and swirling velocity fields for the two experiments and
shows that with stronger forcing (AT = 30K) a narrower vortex is formed. This is consis-
tent with a radial force balance being attained at smaller radii, as discussed above. In each
case the core_radius, characterized. by the radius of maximum swirl, decreases rapidly with
height at first and the swirl intensifies. The intensity stabilizes at a minimum core radius and
thereafter it lessens, accompanied by a gradual spread of the vortex. A similar radial expan-
sion occurs in dust devils at heights above 2 m (Sinclair 1973, p. 1609). Although the patterns
of isotherms and azimuthal isotachs are broadly similar, the meridional flow patterns differ
substantially (Fig. 4). At the sironger forcing level (AT = 30K), the flow is upwards along
the whole vortex core, with a weak downflow near the sidewall, presumably induced by the
presence of the sidewall itself. However, for weaker forcing (AT = 20K), there is a closed
cell of circulation with downflow adjacent to the axis, where the adverse vertical pressure
gradient is larger than the buoyancy force. This can be seen in Fig. 4(b) which shows con-
tours of equal vertical force (dynamic pressure gradient+ buoyancy force), henceforth
referred to as iso-F curves, where

1dp T-T
F=——= ‘). . . .
peaz+g( Te ) (6')

The corresponding iso-F curves for AT = 30K are also consistent with the meridional
streamline pattern obtained in that case. Note that even in the absence of rotation, dynamic
pressure gradients (as commonly defined herein and elsewhere) may not be ignored in
significant regions of the flow (Smith er afl. 1975). For example, just above the heat source,
Dw/Dt =~ 0 whence from the z-component of Eq. (1), we have

1 ap T,— T, *w

padz g( T, )+ KME;
At high pseudo-Rayleigh numbers, the viscous term may be neglected in this equation and
the dynamic pressure gradient approximately balances the buoyancy force. This is a conse-
quence of the definition of the dynamic pressure p as the deviation from the ambient
hydrostatic pressure, and the corresponding definition of buoyancy force. It is also consis-
tent with the fact that immediately above the source, the local horizontal temperature
gradient, and hence the local buoyancy force (essentially F in the case of zero rotation) is
small. :

We conclude that in the absence of rotation, dynamic pressure gradients in a region
immediately above the source have their z-component directed downwards to compensate
for the over-estimate in forces due to buoyancy given by the formula g(7-T,)/7T,. Above one
or two source diameters in height, it turns out that £ & g(7-7.,)/T, and —p,”'dp/dz = 0,
except in the vicinity of an inversion (see Smith ef «f. for a fuller discussion). When rotation
is present, and at heights where the swirling velocity field is spreading and decaying, we also
expect dynamically induced pressure gradients with downward components. However,
below the height of maximum swirl where the vortex narrows with height, it seems possible
that an upwards pressure- gradient could be induced by rotation and this might be com-
parable with or exceed the buoyancy force. Since F must be small just above the source, the
upwards pressure gradient could not be positive at the boundary itself or in a (possibly
shallow) layer immediately above it. )

It seems to us necessary to invoke this effect to account for the large vertical accelera-
tions in dust devils close to the ground as observed by Sinclair (1973) and Kaimel and
Businger (1970) as no vertical driving forces other than pressure gradient and buoyancy

z =40
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Figure 5. Comparison of steady state isobars and radial profiles of —p,—‘dpfey, dashed curves;
g(T—T.)T., solid curves; and F = —g,~'3p/0y+ g(T—T,)/T,, dot-dashed curves; at selected heights in
experiments 1 and 2: (a) comparison of vertical force profiles, AT = 20K ; (b} isobars, AT = 20K ; (c)
comparison of vertical force profiles, AT = 30K; (d) isobars, AT = 30 K. Note in (¢) and (d) there is
a height range in which the rotationally induced vertical pressure gradient is comparable with, and in the
same direction as, the buoyancy force.

force g(T"—T,)/T,, can be envisaged. That such an effect does occur, but not always, is
demonstrated in Fig. 5 which shows the isobars in experiments I and 2 and compares the
radial profiles of p,”'8p/0z, g(T—T,)/T, and F at selected heights in these two flows. In the
case AT = 20K, the dynamic pressure gradient is negative over the entire vortex core.
Hence, even at low levels, the rapid increase in swirl with height (Fig. 3(c)) is insufficient to
induce a net favourable pressure gradient along the axis. However, for stronger forcing
(AT = 30K) the tighter and stronger swirling flow field is able to induce a favourable
axial pressure gradient, comparable in magnitude with, but in this case slightly smaller than,
the buoyancy force g(7T—T.,)/T,. Sinclair (1973, p. 1607) notes that typical dust-devil
measurements indicate vertical accelerations near the ground of order 5ms~2 which if
produced by buoyancy forces g(T—T,)/T, alone would require AT =~ 150K for T, =~ 300K.
Such large horizontal temperature differences are not possible. Sinclair concludes that the
dynamic pressure gradients must therefore be important but does not suggest how these
might arise. We have not studied a wide range of parameter values to date, primarily
"because the fine-mesh resolution and small timestep used for integrating the equations make
the calculations expensive in computer time (see appendix for details). Nevertheless, it
seems reasonable to believe that parameter regimes exist in which upwards pressure grad-
ients are several times as large as g(T--T,)/T, in the lower part of the vortex, values which
would be required to corroborate quantitatively with the measurements in dust-devils,

Fig. 6 shows profiles of vertical velocity at two selected heights for the case AT = 30K.

At the lower height (z = 15c¢m) the maximum vertical velocity occurs at the axis but higher
up (z = 40cm) the maximum is displaced radially and there is a local minimum at the
axis. Sinclair (1973, p. 1608) observes profiles of the latter type at 2m and in one case at
9-5m above the ground in dust devils and explains this effect as being possibly “.. . due to
the ‘pinching-ofi” of the descending core by the radial field of motion at some higher
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Figure 6. Vertical velocity profiles at heights z = 15¢cm and z = 40cm in experiment 2 (AT = 30K).

elevation™. The present calculations show that it is due to the reduced value of F at the axis
" which in turn results from the downwards pressure gradient induced by axial decay and
radial spread of the swirling flow with height as discussed above: see also Fig. 5(c) and note
in particular the local minimum of p,” '3p/éz at r = 0, a feature which is absent in the

profile of g(T=T))/T..

J

(a) by © () )

Figure 7. Comparison of streamfunction patterns between experiments 3-6 and experiment 1: (a) Expt. 1,
the prototype; {b) Expt. 3, Q doubled; (c) Expt. 4, K, halved; (d) Expt. 5, inflow height halved; (e) Expt. 6,
computational domain increased in height by 50%;,. For discussion see text.

The changes in flow behaviour as one of the quantities Q, K, h, H are varied in turn
from their values in experiment | are brought out in Fig. 7. This compares the meridional
stream-function pattern in experiments 3 to 6 (Figs. 7(b)-7(e) respectively) with that in
experiment | (Fig. 7(a)). The changes are consistent with expectations based on the foregoing
discussion. Thus, doubling the screen rotation speed (Fig. 7(b)} increases the centrifugal
force field on inflowing fluid and the centrifugal/radial pressure gradient force balance is
attained earlier at a larger radius, Indeed, no inflowing fluid is able to penetrate to the centre
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and the region of downflow extends along the entire axis, giving a broader, two-cell vortex.
Halving the diffusivity of momentum K, reduces the rate of decay of the swirling flow with
height and therefore the induced adverse pressure gradient along and adjacent to the axis. In
consequence, the reversed cell is much weaker (Fig, 7(c)). Halving the inflow height # pro-
duces a slightly more intense vortex with a slightly smaller reversed cell of circulation (Fig,
7(d)). Apparently the increased inertia of inflowing fluid is sufficient to reduce slightly the
radius at which radial force balance is attained. Finally, increasing # by 509, produces little
change in the flow pattern below z = | m (Fig. 7(e)), confirming the choice of boundary
conditions at the upper boundary as ones which create little unintended constraint on free
flow through that boundary. Just below z = 1-5 m there is a further axial stagnation point
with downflow above. Again this is a feature which one expects due to the continued decay
and radial spread of the swirling flow with height, coupled with a continued reduction of the

buyoyancy field aleng the core, due principally to the lateral diffusion of heat. '

It would appear that axial downflow is a prevalent feature of convectively driven
vortices of the “tall-thin’ variety, although if buoyancy forces are sufficiently strong, down-
flow may be confined to upper fevels. This explains why there js some variability in Sin-
clair’'s measurements of vertical flow in dust-devils; recall that in some cases, downflow
was observed only at the larger probe height. Sinclair (1973 p. 1606) also notes the presence
of slightly cooler air within the warm central core of dust-devils, being in the mean ~ 0-5-
I-0K cooler than the surrounding core. As noted by Sinclair (p. 1608), this may be simply
due to the downwards advectjon of air from aititudes at which mixing with ambient air is
further advanced. In view of this temperature anomaly, one might suspect the validity of the
temperature condition 07/dz = 0 at z = H, chosen in our model. If there is descending air
in the central core, and if this is slightly cooler than the ascending air in the outer core, it
might seem more appropriate to prescribe 7(r, H) at radii where w(r, H) < 0. But unless
measured data from an actual laboratory experiment are available, one has no means of
choosing a realistic temperature distribution for the descending air at z = H as this depends
in an unknown way on the subsequent development and thermal structure of the ascending
air above z = H, Further, the condition &7/dz],_; = 0 as used herein does allow the
temperature distribution in the descending air to be influenced by that of the ascending air
and although neither condition is strictly correct, the one we have used appears to be very
satisfactory. In the present experiments we did not detect local temperature minima in
upper level downflows but there seems-little reason why these could not occur in some
parameter regimes.

The dependence of vertex behaviour on the principal flow parameters as determined
herein corresponds closely with the experimental results of Fitzgarrald (see section 1)},
although it is not possible to make quantitative comparisons; primarily since repre-
sentative values for turbulent diffusivities are not available for the experiments but also
because of slight differences in the flow arrangement. Of course, in reality we must expect
significant variations in eddy diffusivity between different regions of the flow; thus mixing
will be stppressed where the local swirling field is stably stratified, é(vr)/dr > 0, and
. enhanced where it is unstably stratified, d(vr)/@r < 0 or where there are appreciable hori-
zontal temperature gradients. Even so, it is unlikely that variations in K, and X,; give
rise to major structural changes in the flow. One feature of Fitzgarrald's observations which
is not reproduced in our calculations is that of vortex breakdown in which the vortex core
undergoes a sudden jump in radius, analogous to the sudden jump in water level at a
hydraulic jump. Again, the failure of our numerical modet to exhibit this phenomenon is
prabably related to our choice of constant eddy diffusivities and their particular values.

We have carefully resisted any claim to model a dust-devil with close realism but the
model does contain the essential ingredients which are believed to lead to dust-devils, i.e.
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strohg—thc_:rmal forcing from below in the presence of rotation. We are fully aware that our
choice of boundary conditions at r = R, and possibly 1o a much lesser extent at z = H (see
abovej, impose constraints which are not present in the atmosphere but note that the
physical interpretations of vortex behaviour described above are quite general and do not
depend crucially on the particular model we have chosen to illustrate them. In view of this,
there appears little reason to suspect their broad applicability to dust devils although this in
no way means that afl aspects of dust-devil behaviour, especially, for example, the flow at
large heights, can be explained by resort to this particular model.
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APPENDIX

NUMERICAL METHOD

The numerical method is very similar to that used by Lesiie (1971) and need only be
briefly described. Eqgs. (1) to (3) are re-cast by introducing a stream function ¥, such that
u= —r"'3y/dz and w = r"'3y/ér, and the zonal vorticity component {, given by
§ = duféz—0w/dr. In terms of ¥, {, v and T the finite-difference equations corresponding
to Eqgs. (1) to (3) are

oL + 1u(lfr) = ; 52(;) + KM{JZZQ + 5{%&(?0]},' (A.1)
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55 + ;JA(U) = 25,&’ + KM{é,zu + 6[)—1_ 6,,(r0)]}, : (A.z)
5T + %JA(T) - KH{BHT + 5,[}5,&'1’):'}, . . (A3)
1 1 :

t = “51' (_' 6?‘!’) - Fézzwa . . . (A‘4)
r r .

o £ 4o-5) m 24 5) )

and J,(6)1s an Arakawa conserving finite-difference operator. The diffusion terms are to be
evaluated at preceding time levels in order to avoid computational instability,

The boundary conditions now become:
Atr=0: {=¢y=v=0Tjer=0

Atz = 0: = —(1)@/oz?), ¢ =dpjoz=v=0, |~ 1e+tAT O0<r<R,

T =T, R, <r<R
Atr=R: for0gz<h
' {13y 13% oy
C__E;(;—r)—;gz—z’ 5;—0, v=1V, T=T.
forh<zg H
d 18y 182 oy il oT
= ———) o — ——— —:0 _— = = — =
¢ ar(rﬁ) rozt’  ar Yoz 0, v=0, or 0
Atz = H: l
(o 21O 1P o _aw _oT
T T ar\rdz) roéz?’ 8z 8z @8z

The grid used for the numerical calculations consists of 101 points in the vertical and
31 points in the horizontal, which corresponds to a grid spacing of 1 cm. Approximately
6000 timesteps were required for each calculation, requiring roughly S hours computation
time using the Australian Bureau of Meteorology IBM 360/65 computer.



