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Abstract

Solutions of an axisymmetric version of the minimal three-dimensional numerical
model of a tropical cyclone developed by Zhu et al. are described and compared with
those of the three-dimensional model. Vortex evolution is similar in the two models during
the early stages of intensification, but the period of rapid intensification occurs earlier in
the axisymmetric model due to the higher effective resolution obtained using a staggered
grid. There are marked differences at later times, when, in the three-dimensional model,
asymmetric structures develop. The findings are compared with those of an earlier study
by Anthes.

The axisymmetric model is used to investigate certain fundamental aspects of tropical-
cyclone dynamics, including the emergence of a region of supergradient winds in the
boundary layer and the evolution of regions satisfying necessary conditions for inertial
and barotropic instability. Supergradient winds develop in the boundary layer within a
radius of about 100 km of the vortex axis at an early stage of evolution and appear to
be a natural feature of the vortex boundary layer. The development of flow regions sat-
isfying necessary conditions for inertial and barotropic instability occur later and may be
attributed inter alia to the upward transfer of air with relatively high angular momentum
from the boundary layer to the middle and upper layers by the secondary circulation of
the vortex and the downward transfer of air with relatively low angular momentum to the
middle layer. A linear analysis of a two-layer slab-symmetric flow suggests why inertial in-
stability does not occur in the axisymmetric model. Barotropic instability does not appear
to be the mechanism responsible for the growth of asymmetries in the calculations using
the three-dimensional version of the model.

1. INTRODUCTION

The development of numerical models for tropical cyclones began in earnest towards
the end of the sixties with pioneering studies by Yamasaki (1968a,b,c), Ooyama (1969),
Rosenthal (1969, 1970, 1971), Sundqvist (1970), and Anthes et al. (1971a,b). Because of
limited computer resources at that time, these early models were axisymmetric, but some
had significant vertical resolution: Sundqvist’s model had 10 layers and Yamasaki’s (1968c)
model had 13 layers. While the methods used to represent moist processes have come un-
der some scrutiny in recent times (Smith, 2000), many basic features of tropical cyclone
dynamics were elucidated by these studies. An early milestone was the development of
asymmetric models (Anthes et al., 1970a,b), which despite their limitations of resolution
and domain size, provided fundamental insights into a range of basic processes involved in
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tropical cyclone evolution including the growth of asymmetries, the development of super-
gradient winds in the surface boundary layer, and the natural development of flow regions
that might be unstable to one or more types of dynamic instability. To our knowledge,
calculations exploring these features have not since been repeated, at least with models
that include moist processes.

During the last three decades, numerical models have improved significantly as a re-
sult of improved numerical algorithms together with improvements in our understanding
of, and the representation of, physical processes. Furthermore, computing hardware has
developed dramatically to the point that it is now possible to run high resolution models
with sophisticated representations of physical processes, both for forecasting and research
purposes. Nevertheless, there continues to be a role for simple models for developing basic
understanding. Most of the models that fall into this category make the assumption of axial
symmetry, such as those of Wada (1979), DeMaria and Pickle (1988), and Emanuel (1986,
1989, 1995, 1997), although extensions of Ooyama’s (1969) model to three-dimensional flow
configurations have been used to study tropical cyclone motion (e.g. Shapiro, 1992; Dengler
and Reeder, 1997; Dengler, 1998; Dengler and Smith, 1998) and the role of asymmetries
in vortex spin-up (Shapiro, 2000). Most of these models have a minimal vertical resolution
also: Emanuel’s models have effectively two layers and the others three, except for Wada’s
model, which has four. A limitation of many of the models is the closure for deep convection,
which, except in Emanuel’s and Wada’s models, is based upon the convergence of moist
static energy in the boundary layer. While this closure may be adequate for the mature
tropical cyclone, it may be poor for much of the intensification stage (see e.g. Smith, 2000).

In a recent paper, Zhu et al. (2001, henceforth ZSU) used a minimal three-dimensional
model with a fully-integrated representation of moist physics to explore the evolution of
tropical cyclones for different representations of deep cumulus convection. The model re-
moves some of the limitations of the Ooyama-type models and can be regarded as an
extension (albeit a nontrivial one) of Emanuel’s 1989 model to three-dimensions, but for
maximum simplicity it still has only three vertical layers. The present study compares an
axisymmetric version of the ZSU model with the three-dimensional version and goes on to
use the former to investigate aspects of cyclone dynamics for which it is especially suitable.

One reason why corresponding calculations with an axisymmetric model are called for
is that, in the three-dimensional calculations, an initially symmetric vortex on an f-plane
develops flow asymmetries, which become important features after a certain time. The
growth of asymmetries may be expected in all three-dimensional models that use a square
grid to represent a circular vortex, and while their presence is not unphysical, their initiation
in the model is unphysical. Comparisons between the three-dimensional and axisymmetric
versions of the model can help to assess the importance of the asymmetries on the evolution
of tropical cyclones. Even so, as indicated above, tropical cyclone models reported in the
literature tend to have been either axisymmetric or three dimensional and as far as we
are aware, the study by Anthes et al. (1971b) is the only one in which calculations of
axisymmetric and three-dimensional versions of ostensibly? the same model have been
compared.

Because of the fundamental nature of the processes studied by Anthes et al. (1971b)
and Anthes (1972), and because of the many limitations of their models as touched upon
above, we were motivated to repeat and extend some of their calculations using the present
model and its three-dimensional counterpart. The latter models incorporate many improve-
ments and refinements compared with those used by Anthes and coworkers: in particular

i . . . . . . .
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they have higher horizontal resolution, a much larger domain and an improved representa-
tion of convective processes. The precise differences are detailed in section 4.

There are certain basic problems for which the axisymmetric model is more suited
to investigate. One important problem studied here is the development of supergradient
winds in the boundary layer, which lead to the occurrence of the maximum wind speed
within the boundary layer, rather than above it. This is an unusual feature of boundary
layers in general and appears to be special to the termination boundary layer of an intense
vortex. While the problem is not new, it seems to have received relatively little attention
in the literature. Anthes (1972) discussed the phenomenon briefly, but didn’t investigate
it in detail. Shapiro (1983) found a region of supergradient winds in the inner core of an
axisymmetric vortex boundary layer, within the radius of maximum tangential wind speed
above the layer, but the main focus of his study was the steady asymmetric boundary
layer beneath a translating hurricane. Recently, Kepert and Wang (2001) presented high-
resolution numerical solutions of the tropical-cyclone boundary layer in a model with an
imposed steady pressure gradient above the layer. They found a strong radial jet in the core
region in which the tangential wind speed was 10 - 25% supergradient. In the present study
we investigate the evolution of the boundary layer flow in an axisymmetric vortex model
driven by buoyancy forces associated with moist convection. In particular we examine the
stage and radii at which supergradient winds emerge. Time-radius plots of various quantities
are used to provide a more complete picture of vortex evolution than radial profile plots at
a few selected times as are often presented. A companion paper (Smith, 2002) explores a
simple slab boundary layer model for a steady axisymmetric hurricane.

Another problem that has received little attention in the literature since Anthes’ (1972)
study is the development of regions of symmetric inertial instability and barotropic insta-
bility within a tropical cyclone. Some of the early papers investigated the possible role of
inertial instability on tropical-cyclone evolution and concluded that the effect was unlikely
to be important, at least in models with very limited vertical resolution (see e.g. Ooyama,
1969, section 4; Anthes, 1972, section 3f). Anthes (1972) explained the reasons for ex-
pecting the development of such regions, but showed only the time-variation of minima
in the azimuthal averages of the relevant stability parameters. Ooyama (1987) explored
a simple model for the outflow layer in a hurricane and found that although the forced
outflow generates areas of negative absolute vorticity, it was not possible to simulate os-
cillatory or unstable flow patterns that could be identified as a manifestation of inertial
instability. Other approaches to the stability problem have focussed on the instability of
steady, hurricane-like, tangential wind profiles (Flatau and Stevens, 1989; Weber and Smith,
1994; Schubert et al., 1999; Kossin et al., 2001). In particular, Kossin et al. (2001) used a
barotropic model to investigate the instability of vortices with a secondary wind maximum.
Here we use the axisymmetric model to examine the evolution of flow regions satisfying the
necessary conditions for inertial and barotropic instability, including the natural tendency
for vortices to develop a secondary wind maximum. However, it appears that barotropic
instability is an unlikely mechanism for explaining the asymmetries that develop in the
calculations using the three-dimensional version of the model.

In the next section we describe briefly the model formulation and in section 3 the
cumulus parameterization schemes. The numerical model experiments we carry out are
detailed in section 4 and the results are presented in section 5. A summary and conclusions
are contained in section 6.
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2. DESCRIPTION OF THE MODEL

(a) Governing equations

The model is based on the hydrostatic primitive equations in cylindrical sigma-coordinates
(r, A\, o) on an f-plane, where

U,:p_ptop :p_€t0P7 (1)
Ps — Ptop p
P" =ps — Prop and piop are the surface and top pressures, and ptop is a constant, taken
here to be 100 mb. Then the upper and lower boundary conditions require that ¢ =0 at
o =0 and o =1, where ¢ = Do /Dt is the vertical o-velocity, ¢ is the time, and D/Dt is the
material derivative. The zonal and meridional momentum equations and the hydrostatic
equation are:
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where u and v are velocity components in the radial r— and tangential A-directions, f
is the Coriolis parameter, evaluated here at 20°N, R is the specific gas constant for dry
air, k = R/cp, ¢p is the specific heat of dry air, § is the potential temperature, ¢ is the
geopotential, and D, and D, represent the frictional drag in the r— and A-directions,
respectively. The specification of D, and D, is described by ZSU. The surface pressure
tendency equation, derived from the continuity equation and boundary conditions is

Opx 19 .
o / ror & T ®
and ¢ is given by
o ['18

The thermodynamic and mmsture equations are
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where 6 is the potential temperature, q is specific humidity, Q¢ and @, represent the dia-
batic heat and moisture sources, respectively, including those associated with deep cumulus
convection. The temperature T is related to 6 by

T = <£>’€9: (p*0+pt013)ﬁ0 (9)

Do j 2
where p, = 1000 mb.
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(b) Ezplicit moist processes

Explicit condensation is treated in the simplest possible way. If at any time the air
becomes saturated at a grid point, grid-scale condensation and precipitation processes
are allowed. The excess water vapour is condensed to liquid water and is assumed to
precipitate out while the latent heat released is added to the air. This procedure is applied
before the sub-grid-scale convection scheme, whereupon the convection scheme is applied
to a conditionally-unstable atmosphere with relative humidity less than 100% (n.b. if the
relative humidity equals 100%, the condition for convective instability is not satisfied).

(¢) Radiative cooling and surface turbulent fluzes

Newtonian cooling is added in the thermodynamic equation to represent the effect of
radiative cooling and the turbulent flux of momentum to the sea surface and the fluxes
of sensible heat and water vapour from the surface are represented by bulk aerodynamic
formulae as described in ZSU.

(d) Boundary and initial conditions

The calculations are carried out in a cylindrical domain (0 <r < R, 0<o <1) with
the following boundary conditions:

DA

u=0, v=0, E_O’ at r=0 (10)
u=0, v=0, %:0, at T=R (11)

where A can be any of the quantities u, v, 6, q. The initial axisymmetric vortex is barotropic
and the tangential velocity distribution is detailed in ZSU. It has a maximum wind speed
of 15 m s~ ! at a radius of 120 km.

The surface pressure and geopotential are obtained by integrating the gradient wind
equation in o-coordinates radially inwards, i.e.

RTs[In (ps(R)) — In (ps (r))] =/ (st + VSQ) dr. (12)

r

R 2
¢(R) — ¢(r) =/ (fV + VT - %a%) dr (13)

The determination of the surface pressure using Eq. (12) requires the surface temper-
ature to be known. Here it is taken to be the sea surface temperature. The temperature in
each layer is obtained from the potential temperature, obtained by solving Eq. (9).

The far-field temperature and humidity structure are based on the mean West Indies
sounding for the ‘hurricane season’ (Jordan, 1957), but the near-surface mixing ratio has
been reduced slightly so that the sounding is initially stable to deep convection. The initial
surface pressure is 1015 mb. In the presence of the initial vortex, the minimum surface
pressure (at the vortex centre) is 1008 mb. Horizontal variations of mixing ratio in the
presence of the initial vortex are neglected. Details of the initial sounding are given in ZSU.

(e) The numerical method

The model is divided vertically into three unequally deep layers with boundaries at



6 Nguyen Chi Mai, Roger K. Smith, Hongyan Zhu, Wolfgang Ulrich

6=0 0=0

T S CY.XTSS (u i --amoss

0, =0.333

_---@@ ------- Py 8y Ggp------ @@----ogzo.en

0, =0.88

1
SR CEIEEE Y RS
.— -_—
o=0 o=1

Ar -

A

Figure 1. Configuration of o-levels in the model showing locations where the dependent variables are

stored. The horizontal velocity components, geopotential, potential temperature, specific humidity and

the moist static energy used in the convection scheme (see section 3) are calculated at levels 1, 3 and b
and the vertical velocity ¢ and convective mass flux are stored at levels 2 and 4.

o =1, o4, 02 and 0 (see Fig. 1). All the dependent variables, such as horizontal velocity,
potential temperature, specific humidity and geopotential, are defined in the middle of
each layer (o0 =03, o1, and o03), and the vertical velocity is staggered, i.e. it is defined
at the boundaries between layers. The variables are staggered in the radial direction also
as indicated in Fig. 1. The equations are expressed in finite difference form in both the
horizontal and vertical and integrated using the Adams-Bashforth third-order method.
The initial pressure, temperature, mixing ratio and geopotential height in the middle of
each layer and at the boundaries between layers are listed in Table A1 of ZSU.

(f) Subgrid-scale diffusion

An important consideration in tropical cyclone modelling is the suppression of small-
scale noise and numerical instability in the calculations. This problem becomes of extreme
importance when the formulation provides for the explicit release of latent heat. The meth-
ods used in this paper are detailed in an appendix.

3. CUMULUS PARAMETERIZATION SCHEMES

There are options in the model for using three different representations of subgrid-scale
cumulus convection as detailed in section 3 of ZSU. Here we use only one of these schemes,
a version of the scheme proposed by Arakawa (1969) modified to include the effects of
precipitation-cooled downdraughts.

4. THE NUMERICAL EXPERIMENTS

In the next section we describe the results of two numerical experiments. Experiment 1
uses the Arakawa representation of sub-grid-scale deep convection and allows for grid-scale
latent heat release as described in section 3b. We take this to be the control experiment.



Q. J. R. Meteorol. Soc.

Experiments 2 is similar to Expt. 1, but does not have any representation of subgrid-
scale convection. The results of these experiments are compared in section 5(a) with the
corresponding three-dimensional calculations of ZSU. Experiment 1 is used in the sections
5(b) - 5(c) to investigate particular aspects of vortex dynamics.

5. REsSULTS

(a) Comparison of calculations from the azisymmetric and three-dimensional models

Figure 2 compares time series of the maximum boundary-layer wind speed and minimum
surface pressure in Expts. 1 and 2 with those for the corresponding three-dimensional
calculations of ZSU. The time series of wind speed show both the maximum point value
(labelled 3) and the azimuthally-averaged maximum value (dashed line) for the three-
dimensional calculations. All calculations are carried out with a horizontal grid spacing of
20 km. In general, the pattern of vortex intensification is similar in the two- and three-
dimensional calculations with a gestation period, a period of rapid growth, and a mature
stage in which the vortex strength fluctuates about some relatively high mean value. In the
calculation with the Arakawa closure, the intensification rate during the gestation period
is a little larger in the axisymmetric calculation and the gestation period is shorter. This
behaviour is like that described in a similar comparison by Anthes et al. (1971) and it
is reasonable to attribute it to the higher effective resolution provided by the staggered
grid in the axisymmetric model. Anthes et al. (1971) showed, inter alia, that the pressure
gradient term is represented more accurately on a horizontally-staggered grid and that
this accounts for the stronger vortex. Unfortunately, it is difficult to properly compare the
differences in the results of our study with theirs because there are substantial differences
between the two model formulations. Although their model has three layers also, they
define o = p/ps so that the ratio of layer depths is different from ours; they use also a much
smaller domain size, less than one quarter of the 2000 km radius domain used here; a larger
initial vortex; and a coarser grid (30 km compared with 20 km used here). They use also
a different staggering of variables in the vertical, with the geopotential stored at the same
levels as the vertical o-velocity. Further, their model uses a parameterization scheme based
on moisture convergence and does not have an explicit water cycle.

After the period of rapid intensification, the maximum intensity as measured by the
maximum tangential wind speed is comparable in the two and three-dimensional calcula-
tions with the latter showing larger amplitude fluctuations. The minimum surface pressure
is, in general, higher in the three-dimensional calculations, a feature that is true of both
experiments. We attribute this fact to the evolution of asymmetries as discussed below.

The behaviour of the calculations in the case with only an explicit representation of
latent heat release is broadly in line with that for the Arakawa closure, but there is little
difference in the decay rate between the axisymmetric and three-dimensional calculations
during the gestation period as would be expected.

The higher effective resolution provided by the staggered grid in the axisymmetric
calculation is evident in Fig. 3, which compares time series of the maximum boundary-
layer wind speed and minimum surface pressure in Expt. 1 with those for the corresponding
three-dimensional calculation, but with a horizontal grid spacing of 10 km. The time series
in the two calculations are closer to each other for the first 36 h of integration than in
Fig. 2a and b, because the gestation period in the three-dimensional calculation is reduced.
However, there are major differences in the time series at later times when the vortex in
the three-dimensional calculation develops asymmetries. We examine these asymmetries in
more depth in subsection (e) below.
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Figure 2. Comparison between time series of the maximum boundary-layer wind speed (left panels)

and the minimum surface pressure (right panels) for Expts. 1 and 2 (labelled 2) and the corresponding

time series for the azimuthally-averaged wind field (dashed curves) and maximum point value wind speed

(labelled 3) in three-dimensional calculations of ZSU. Upper panels are for the Arakawa closure (Expt.
1) and lower panels for the case with only the explicit release of latent heat (Expt. 2).
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Figure 3. As for Fig. 2, but for the Arakawa closure and with 10 km horizontal grid spacing in the
three-dimensional case and 20 km spacing in the two-dimensional case.

(b) Development of supergradient winds in the boundary layer

The frictionally-induced inflow in the tropical-cyclone boundary layer is a prominent
feature of the cyclone structure and can be attributed to the disruption of approximate
gradient-wind balance above the boundary layer by turbulent stresses (see e.g. Smith,
1968). According to boundary layer theory (e.g. Jones and Watson, 1963), the perturbation
pressure gradient normal to the boundary is negligibly small so that the horizontal pressure
gradient is approximately constant through the boundary layer, equal to that just above
the layer. However, the tangential wind speed is reduced by friction within the boundary
layer with a consequent reduction of the centrifugal and Coriolis forces. The result is a net
inwards pressure gradient force in the boundary layer and it is this that drives the inflow.
Based on this view of boundary layer dynamics, it is surprising to find that the maximum
tangential wind speed actually occurs in the boundary layer instead of the layer above.
This feature may be seen in the time-radius isotach plots of the difference between the
tangential wind speed in the middle layer and the boundary layer, vs — vy, for the control
experiment, shown in the left panel of Fig. 4. It is notable that after about 6 h, a region
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Figure 4. Time-radius plots of isotachs of vs — v}, (left panel, contour interval 5 ms™?!, negative values

shaded), and the net pressure gradient force (pressure gradient minus centrifugal and Coriolis force) per

unit mass in the boundary layer for Expt. 1 (right panel, contour interval 5 x10~3 ms™2, positive values
shaded).

develops surrounding the vortex axis in which the tangential wind speed in the boundary
layer exceeds that in the overlying vortex. There are two possible interpretations of this
result. On the one hand it might be argued that boundary layer theory cannot be applied
within the context of the present model, because of the coarse vertical resolution. More
precisely, boundary layer theory relates to the radial pressure gradient at the top of the
boundary layer, whereas the pressure gradient at the next model level is characteristic of a
height several kilometres above the boundary layer. On the other hand, if boundary layer
theory ¢s valid in the inner core region, the boundary layer winds there might still become
supergradient in the sense that the sum of the centrifugal and Coriolis forces exceeds the
inwards-directed radial pressure gradient. In fact, time-radius plots of the net radial force
(excluding friction) in the boundary layer (right panel of Fig. 4), indicate that this is the
case and that the region of negative net force in this layer contains the region of negative
V3 — Up.

Reasons to expect the occurrence of supergradient winds in the boundary layer are dis-
cussed by Anthes (1974, p506). As explained by Ooyama (1982), the spin-up of a symmetric*
vortex requires inflow to occur above the boundary layer and the only conceivable mecha-
nism for producing convergence in this region is the production of buoyancy in the inner-core
region of an immature vortex (see e.g. Smith, 2000). As rings of air converge in this region,
they approximately conserve their absolute angular momentum so that the tangential wind
speed at a particular radius and particular time is related to the parcel’s initial absolute
angular momentum and the radial displacement that it experiences. In contrast, air parcels
converging in the boundary layer lose a fraction of their absolute angular momentum as
a result of surface friction, but they undergo much larger inward displacements. This dif-
ference in displacements is confirmed by Fig. 5, which shows the radial trajectories of air
columns in the two layers as the vortex evolves. The calculations in the right panel of Fig.
4 imply that the frictional loss of angular momentum is outweighed by the larger inward
displacement in the inner core region as the vortex intensifies.

The occurrence of wind speeds that are larger in the boundary layer than outside

* There exists also an asymmetric mechanism that can lead to vortex intensification as described in
recent papers by Moller and Montgomery (2000) and refs. and Shapiro (2000).
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Figure 5. Time-radius plots showing the trajectory of air columns in the middle layer (left panel) and
(b) the boundary layer (right panel) in Expt. 1.

it is unusual in fluid flows in general and may be special to the terminating boundary
layers of intense vortices. The development of such a region has important consequences
for tropical cyclones (and possibly also tornados, waterspouts and dust devils) as it provides
a reason to expect that the highest wind speeds in these vortices will be found close to the
surface. Also, the rapid deceleration of the boundary layer inflow in tropical cyclones must
be an important limiting factor on both the smallness of the "eye” and on the ultimate
vortex intensity. This seems to be an aspect of tropical-cyclone structure that has received
less attention than it deserves. A recent study of the tropical-cyclone boundary layer by
Kepert (2001) has shown that the vertical advection of supergradient winds can lead to
strong outflow jets at the top of the boundary layer, a feature that may be associated with
vortex breakdown (an excellent review of vortex breakdown in the context of tornadoes
is given by Snow, 1982; 959-961). The study by Smith (2002) shows that the region of
supergradient winds in a slab boundary-layer model may be accompanied by significant
oscillations of vertical velocity at the top of the boundary layer. However, the radial scale
of these oscillations is below the resolution of the present model.

(¢) Development of possibly unstable flow regions

Another aspect of tropical-cyclone dynamics that arguably has received less attention
in the literature than it deserves is the development of regions where necessary criteria
for inertial instability and/or barotropic instability are satisfied, especially in the upper
troposphere. In an axisymmetric model, the criterion for inertial instability is that the
quantity I? = (ups(f + 2V/r) <0, where V' (r) is the tangential wind speed at radius r and
Cabs = f + ¢ is the vertical component of absolute vorticity (Rayleigh, 1916). If V(r) >
—%rf, regions of negative I? coincide with those of negative Cqps. Regions of negative I°
are potentially important; for one thing instability may occur there and for another, the
occurrence of these regions precludes the existence of a balanced solution. Ooyama (1969,
p10) noted the development of such regions in his balanced three-layer hurricane model,
but argued that the instability does not occur because of the coarse vertical resolution.
The necessary condition for barotropic instability is that the radial gradient of absolute
vorticity changes sign at some radius (see e.g. Anthes, 1972). While barotropic instability
cannot be realized in an axisymmetric model, since unstable disturbances have azimuthal
structure, it may occur in the three-dimensional model. We investigate this possibility in
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Figure 6. Upper panels: time-radius plots of the inertial stability parameter, 12, for Expt. 1 in the

middle layer (left), and the upper layer (right). Contour intervals are 5 x10~7 s72 and 1 x107% s72,

respectively. Negative values are shaded. Lower panels show the corresponding plots of the radial gradient

of relative vorticity, 8¢/dr. A necessary condition for barotropic instability is that this quantity changes

sign at some radius. Contour intervals are 5 x10~° s~2 and 1 x10~8 s~2, respectively. Negative values
are shaded.

subsection (f) below.

(d) Inertial instability

The upper panels of Fig. 6 show time-radius cross sections of I> for Expt. 1 in the
middle and upper layers, respectively. A region where I? < 0 develops in both layers a little
after a day and a second region develops in the upper layer a few hours later. In the middle
layer, the region of negative I is confined to radii between about 180 km and 370 km and
moves gradually outwards with time. In the upper layer the overall region of instability is
much more widespread. The occurrence of multiple regions of negative I? was noted also
by Anthes (1972; see p471), but he showed profiles of this quantity only at selected times
(his Fig. 13) and only in the upper layer.
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Figure 7. Schematic diagram illustrating the idea of inertial instability in a continuous fluid (left panel),
and in a two-layer fluid system (right panel). See text for discussion.

The ideas relating to inertial instability may be illustrated by reference to Fig. 7. The
left panel depicts the radial displacement of a thin annular tube of fluid in a background
flow that is rotating with tangential velocity distribution V' (r) about a vertical axis. This
velocity field is assumed to be in gradient wind balance. If the tube is displaced from radius r
to radius r + Ar while conserving its absolute angular momentum, and if it experiences the
existing local pressure gradient at its new radius, it will be subjected to a net outward force,
approximately equal to —I?Ar. If I? > 0, the force is a restoring force and the displacement
is stable. In contrast, if I> < 0, the force is in the direction of the displacement and leads
to instability.

The foregoing argument breaks down if it is not possible to displace a tube of fluid
relative to its neighbours at different heights, but at the same radius. Then there can be no
difference in force with height and no instability within the layer. Clearly the tube argument
is inapplicable to a barotropic flow, but in a two-layer fluid, an outward displacement in one
layer may be compensated by an inward displacement in the other on account of continuity
(see Fig. 7, right panel). If as a result of such displacements, the force experienced by
displaced ring-like columns of fluid is in the direction of the displacement, the secondary
circulation will strengthen and in doing so will extract kinetic energy from the basic state
vortex. Although tube arguments are inappropriate in this situation, a stability analysis is
revealing. Such an analysis for the simplest case of slab-symmetric geometry is described
in an appendix. The analysis shows that the appropriate criterion is based on a suitably
weighted mean value of I?, say 72, and that only waves of horizontal wavelength larger
than a certain threshold are unstable. Therefore if the horizontal extent of the region over
which T° is negative is less than this wavelength, instability will not occur. Calculations
show that T~ is dominated by the contribution from the middle layer (Fig. 6, upper left
panel). Equation (A.7) in the appendix shows that the threshold wavelength for instability
decreases with decreasing density contrast (i.e. static stability), whereupon in a multi-layer
or continuous system, waves of higher vertical wavenumber will have a greater chance of
being unstable at a given horizontal scale.

The development of regions with I? < 0 (or Cups < 0) in tropical cyclones is associated
with the secondary circulation of the vortex and may be interpreted variously in terms of
the vorticity equation; or in terms of the vertical transfer of absolute angular momentum,
Mapbs, by this circulation (Anthes, 1972, pp471-472); or in terms of the vertical transfer
of potential vorticity (Flatau and Stevens, 1987) by the circulation. For example, Anthes
notes that in the early stages of cyclone development, M, increases radially outwards.
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Figure 8. Radial profiles of contributions to the vorticity tendency in Eq. 14 at 25 h (left panel) and 72

h (right panel). The integer labels 1-4 denote the contributions from horizontal advection, divergence,

vertical advection and tilting, respectively. The solid line is the sum of these contributions. The units
are 1.0 x 1010 s=2, Note the different scales on the two plots.

However, the reversal of the radial gradient of Mps (corresponding with the production
of negative (4ps) occurs when air at large radii (large Myps) is advected inwards in the
boundary layer. When this air is ultimately carried upwards in the inner core region and
outwards aloft, it may retain a higher value of M,;s than air at the same level, but at a
larger radial distance from the vortex axis, despite some frictional loss of Mgps to the sea
surface. These arguments are related to those for the development of supergradient winds
in the boundary layer as discussed in subsection (b).

We explore briefly the vorticity approach using our model, focussing on the vorticity
tendency for layer 3, which contributes most to the mean inertial stability parameter I?.
The accuracy of such diagnostics is limited by the the minimal vertical resolution of the
model, but is best for layer 3. The vorticity equation may be written in o-coordinates as

¢ 0 .0¢C (+ foru 06 10rD,

- et % e et e
where £ = 0v/d0 is the horizontal component of relative vorticity in these coordinates and
¢ =(1/r)0(rv)/0r is the vertical component. Figure 8 shows plots of the first four terms on
the right-hand-side of this equation for layer 3 as functions of radius at the two times: t = 25
h and ¢ = 72 h. In the finite difference form of the equation, the twisting term (fourth on the
rhs) involves an average of four separate contributions from staggered points at levels 2 and
4. The vertical advection term (second on the rhs) was estimated using the finite difference
form of the expression —9(6¢)/0o + (06 /do. At 25 h, just prior to the emergence of the
region of negative I” in the upper left panel of Fig. 6, the vorticity tendency is negative in
this region, the major contribution being from the tilting term (curve labelled 4). It turns
out that most of this contribution, itself, is from the tilting of radial vorticity component
by the radial gradient of vertical velocity at the upper level (level 2), which is negative. At
72 h, typical of conditions in the mature stage of evolution, all four terms make comparable
contributions to the negative tendency in the vorticity equation at radii where the negative
absolute vorticity occurs in the upper left panel of Fig. 6.

(14)

(e) Barotropic instability

The lower panels of Fig. 6 show time-radius cross sections of 9¢/0r for Expt. 1 in the
middle and upper layers. At the initial instant the radial vorticity gradient is negative in
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both layers inside a radius of about 320 km and it is positive beyond this radius. As time
proceeds, the region of positive gradient moves to radii larger than 500 km after about a
day, but three other regions develop in the middle layer and two in the upper layer, the
region of strongest positive gradient being in a radial band between about 150 km and 270
km from the axis in the middle layer (see lower left panel).

Reasons for the development of new vortex profiles satisfying the necessary conditions
for barotropic instability are suggested by the calculations of vortex intensification by Schu-
bert and Alworth (1987; see their Fig. 4). These authors examined the evolution of potential
vorticity in a symmetric, balanced hurricane-like vortex associated with an imposed heat
source surrounding the vortex core. During the early stages of development, a potential
vorticity minimum in the upper level of the cyclone is located at the vortex centre, above
a potential vorticity maximum. Subsequently, the potential vorticity minimum is pushed
off the centre by the ascending high potential vorticity air, thus creating a region where
the potential vorticity gradient changes sign on an isentropic surface. As noted by Flatau
and Stevens (1989), this development can set the stage for barotropic instability. Slightly
more realistic calculations were carried out by Méller and Smith (1994), but the essential
features of the potential vorticity evolution were confirmed (see their Fig. 3). The develop-
ment of profiles with new sign changes in the relative vorticity gradient in our model may
be attributed to the development of new extrema in the vorticity profile itself, as discussed
in subsection (d) above. This interpretation is consistent with the foregoing discussion in
terms of potential vorticity.

() The growth of asymmetries

During the rapid deepening period, the vortices in the three-dimensional calculations
develop marked asymmetries in the inner core region as described by ZSU (see section 5c¢
and Fig. 10). These are reflected in the large differences between the maximum azimuthally-
averaged wind speed and the maximum point-value wind speed in these calculations shown
in Fig. 2. Generally, the axisymmetric calculations yield a higher wind speed than the
azimuthally-averaged wind speed in the three-dimensional calculations. The reasons for
this difference, and indeed, the reasons for the differences in the time series of maximum
boundary-layer wind speed and minimum surface pressure between the axisymmetric and
three-dimensional calculations is evident by examining the pattern of asymmetries that
develop in the latter calculations. In the calculation shown by ZSU (see Fig. 10 therein),
the asymmetry in relative vorticity and vertical motion in the middle troposphere is dom-
inated by an azimuthal wavenumber-4 pattern during the gestation period, and a marked
wavenumber-2 structure evolves during the period of rapid intensification. ZSU suggested
that the initiation of wavenumber-4 pattern is associated with the representation of an
axisymmetric flow on a square grid and the wavenumber-2 pattern with the use of channel
boundary conditions in a domain of finite (albeit relatively large) size. We examine these
possibilities further here.

In Expt. 1, a weak azimuthal wavenumber-4 asymmetry in the vorticity field is evident
also from an early stage in the calculation. This asymmetry does not rotate. After 60 h of
integration, an azimuthal wavenumber-2 vorticity asymmetry rapidly appears in the inner
core region (within 200 km of the axis). The two cyclonic portions of this asymmetry form
vorticity centres of comparable strength that rotate around each other and subsequently
merge. These centres have corresponding low pressure minima and are associated with
enhanced vertical motion aloft (figures not shown). Assuming local gradient wind balance,
the smaller scale of the individual vortices would imply a higher central pressure for the
same maximum tangential wind speed (see e.g. Callaghan and Smith, 1998). Asymmetries
occur also in the calculation with the Emanuel and Ooyama closures for deep convection,
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and in the case with only the explicit release of latent heat (see ZSU, Fig. 10), but in each
case their structure (e.g. the dominant azimuthal wavenumber) is different.

The suggestion that the wavenumber-2 component is a result of using channel bound-
ary conditions must now be dismissed. We carried out two additional calculations: one with
a larger domain size (6000 km x 6000 km, instead of 4000 km x 4000 km) and the other
with box boundary conditions, with zero normal flow at the boundary. In both cases there
was no detectable change in the evolution of the wavenumber-2 pattern. The asymmetry
is also insensitive to the diffusivity. We carried out one calculation with twice the amount
of damping. The extra smoothing delayed the onset of rapid intensification by about 12 h,
but the wavenumber-2 asymmetry is still a prominent feature when rapid intensification
occurs.

The axisymmetric model was developed, inter alia, to serve as a benchmark for under-
standing the role of the asymmetries on vortex evolution. The calculations in subsection
(e) indicate that barotropic instability could be involved in the growth of some of the
asymmetric components, although the higher effective resolution in the axisymmetric case
means that there are quantitative differences in the axisymmetric and three-dimensional
calculations as evidenced by the plots in Fig. 2. In fact, the azimuthally-averaged tangential
wind speed in the three-dimensional calculation (with 20 km horizontal resolution) does
not show the development of a secondary wind maximum in the middle layer. Even so, the
initial tangential wind profile in both calculations is such that the radial vorticity gradient
changes sign and as such satisfies a necessary condition for barotropic instability.

A linear stability analysis of the initial tangential wind profile using the method de-
scribed by Weber and Smith (1994) shows that it is, in fact, barotropically unstable to a
disturbances of azimuthal wavenumber-2, although the e-folding time scale of this mode
is relatively long, on the order of 66 h. Nevertheless, the profile is barotropically stable to
higher wavenumbers, in particular to wavenumber-4, which is the first asymmetric compo-
nent to appear in the ZSU calculations. As the vortex profile changes only slowly during
the gestation period, it is unlikely that it becomes barotropically unstable to wavenumber-4
during this period.

During the period of rapid development, the tangential wind profile changes rapidly
and the vortex becomes baroclinic, strengthening at low levels and weakening aloft. Indeed,
the radius at which the radial vorticity gradient in the middle layer changes sign moves
outwards after about 14 h, and shortly afterwards a further region of positive vorticity
gradient develops closer to the vortex axis, between 220 and 320 km radius (Fig. 6, lower
left panel). However a linear stability analysis of the mean tangential wind profile in the
middle layer at 60 h shows that it is not appreciably more unstable than at the initial
time. Thus barotropic instability alone would not account for the rapid emergence of the
azimuthal wavenumber-2 structure. In fact, a calculation of a 'no physics’ version of the
model initialized with the initial barotropic vortex together with its unstable wavenumber-2
eigenmode shows that the numerical diffusion in the model is sufficient to prevent growth
of this eigenmode.

It is beyond the scope of this work to investigate the linear stability of the evolving
baroclinic vortex in the model, but on the basis of the foregoing (but admittedly incomplete)
stability analyses, we hypothesize that the growth of both asymmetries in the model is not
a manifestation of dynamic instability and is most likely a consequence of the numerical
approximation in the equations as suggested by ZSU. This hypothesis finds support in
recent calculations by the third author, which show that the asymmetries are sensitive also
to the type of vertical grid used in the model. The details of these calculations will be
submitted for publication in due course.

15
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6. SUMMARY AND CONCLUSIONS

A two-dimensional version of the minimal three-dimensional tropical cyclone model
of Zhu et al. has been used to examine certain basic aspects of tropical cyclone evolu-
tion. Comparison of the three-dimensional and axisymmetric versions of the model have
been used to assess the importance of asymmetries on the dynamics of tropical cyclones.
Vortex evolution is similar in the two models during the gestation period, although, for
the same horizontal grid size, the latter is shorter in the axisymmetric model because of
the higher effective resolution of the staggered grid. During the period of rapid intensifi-
cation, the three-dimensional model develops marked asymmetries so that the maximum
of the azimuthally-averaged tangential wind speed is significantly less than the maximum
tangential wind speed in the two-dimensional calculation. The development of the asymme-
tries has a marked effect on the ”pressure-wind relationship”: typically minimum pressures
are higher when asymmetries are present, although maximum wind speeds are similar in
strength.

We examined the development of a region of supergradient winds in the surface bound-
ary layer of the model cyclone. The calculations show that supergradient winds are to be
expected because air parcels suffer large inward displacements in the boundary layer. Even
though absolute angular momentum is only partially conserved in this layer, large tangen-
tial wind speeds that can be attained can exceed those that occur above the boundary
layer, especially inside the radius of maximum tangential wind speed of the latter.

Stability indices indicate that regions of flow develop in the axisymmetric calculations,
in which necessary conditions are met for inertial and barotropic instability. Mechanisms
for the development of such regions are discussed. An analysis is presented that suggests
why symmetric inertial stability is unlikely to materialize in a model with limited verti-
cal resolution such as ours. We present evidence to support of the hypothesis that the
asymmetries that develop in the three-dimensional version of the model are not a result of
barotropic instability, but rather a consequence of the numerical approximations made.
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APPENDIX

Inertial instability in a two-layer slab symmetric model

Consider the stability of a two-layer meridional shear flow on an f-plane in a slab-symmetric
model as illustrated in Fig. 1. The upper and lower layers have uniform densities p; and p2, depths
h1 and h2, and mean depths H; and Ha, respectively, where hy 4+ ha = H; + H»> is a constant.
Suppose there is an meridional flow Vi(z) in the upper layer and Va(x) in the lower layer. The
linearized equations of motion take the form

Oun g, 10Pn (A1)
ot p Oz

Ovnp, dVy,

—_— —_— n=0 A2

(S (A2)
Ohn O,
4 H,—Z = A.3

ot + oz (A-3)

where u,, v, are the perturbation velocities and n =1, 2. The hydrostatic equation relates dp2/0x
to dp1/0x, i.e.

Op2 op1 Oho

—_— == — —_— . A4

9 = og T2 —p)—m, (A.4)
If dVi/dz and dVa/dz are both constants, the equations have perturbation wave solutions of the

form

(uny 'Unypn/ﬁa hn — Hn) = (ﬂny On, I:)n; ’Aln)ei(kxiut)a (A5)
where k and w and the qualities (iin, O, Pn, ﬁn), (n=1,2), are constants. Substitution of (A6)
into (A1)-(A5) leads to a set of eight homogeneous algebraic equations for the eight constants
etc. These equations have a nontrivial solution only if

w2 =c2ok? + f(f +dV/dz) (A.6)
where crq = [g(p2 — p1)/(p1/H1 + p2/H2)]Y/? is the phase-speed for long internal gravity waves
and dVy/dx = [(p1/H1)dVi/dx + (p2/H2)dV>/dx]/(p1/H1 + p2/H?2) is a depth-weighted average
meridional vorticity. Instability occurs if w? <0, requiring that the depth-weighted absolute vor-
ticity, f + dV /dz < 0. Then inertial instability occurs for the wavenumbers k such that

w = k2, say. (A7)

Cla

k2 < —

The foregoing analysis becomes more complicated if dVi /dx and/or dV>/dz vary with x. Then
we may only substitute

(uny 'Unypn/ﬁa hn — Hn) = (ﬁn(m): f’n(w)a Isn(:L‘), ’Aln(w))e_uta (AS)
and the z-dependence of waves has to be determined as part of the eigenvalue problem, which, in
general, will have to be solved numerically. The same is true in the case of a vortex in cylindrical

coordinates for a general swirling velocity. Nevertheless, the simple analysis described above allows
a number of important inferences may be made:

19

Configuration of a two-layer model for illustrating inertial instability. See text for discussion.
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1. Only waves of wavelength larger than 27/k; are unstable. Therefore the horizontal extent of
the region over which f + V' is negative is less than 27/kr, instability will not occur.

2. The threshold wavelength for instability increases with increasing density contrast (i.e. static
stability) in which case crg increases.

3. One may surmise that in a multi-layer or continuous system, waves of higher vertical wavenum-
ber i.e. smaller phase speed will have a greater chance of being unstable at a given horizontal
scale.

4. The existence of instability means that for some distributions of variables, lateral displacement
on fluid parcels leads to forces in the same direction.

While these results are not quantitatively applicable to an axisymmetric vortex similar qualitative
results may be expected in that case, but the mathematics will be more complicated.

Subgrid-scale diffusion

Some control of small-scale noise is achieved by the use of a third-order upwind advection
scheme. Remaining spurious small amplitude two-grid-scale disturbances arising from the dis-
cretization of the equations are controlled here with a biharmonic damping term appended to
all prognostic equations except the pressure tendency equation of the form

—kaViy,

where x is any of the variables u, v, 8, q. The factor k4 is a constant for a given resolution and is
converted into a time and length scale with k4 = A*/74. Here we use 74 = 6 h. This damping is not
sufficient to smear out the large amplitude shocks that arise at grid points where there is a sudden
release of latent heat associated with explicit precipitation. For this reason we add a diffusion term
to the right-hand-side of all prognostic equations (except for pressure): i.e.
2 X

KVix = ‘5[u,v],xr_2
where 0y 4], = 1 for either x =u or x = v, and 0[,],, = 0 otherwise. This procedure is formally
equivalent to the representation of Reynolds stress terms in terms of an eddy diffusivity. The factor
K is set proportional to the divergence, a procedure implemented by Ooyama (1984), i.e.

10(ru) | A

K= s
r or T

with 72 = 24 h. The task of controlling the small-scale noise could be achieved with this filter also by
specifying some minimum threshold for K. However, it is known that V2 damping is less specific in
damping short waves and may reduce the amplitudes of resolved modes to a higher degree than the
biharmonic filter. This may cause an undesirable high overall diffusion, leading here, for example,
to a retardation in the onset of rapid vortex intensification.

It should be stressed that the applied damping techniques have an effect on the outer bound-
ary condition. The extra diffusion acts like a sponge for large amplitude gravity waves and reduces
the amplitude of the waves that leave the computational domain. We have implemented a combi-
nation of a sponge and an open radiation boundary, which we found to be superior to a radiation
boundary solely or a sponge solely in keeping reflections small, but this improvement is not a
necessary ingredient to the present model. Hack and Schubert (1981) investigated pure radiation
boundary conditions suitable for axisymmetric vortices at the outer radial boundary in a model
without moisture and without extra damping. They stated that the some radiation boundary con-
ditions they tested were suitable, but not perfect. They speculated that in a model with moisture
included, the latent heat release might generate outward propagating gravity waves with larger
amplitudes than in their model. We applied an extra Newtonian damping in the outermost quarter
of the domain up to the maximum radius R where the radiation condition is applied to reduce
the amplitude of such gravity waves, so that the imperfections of the radiation boundary condition
are less critical. Specifically we add Newtonian damping terms of the form —vu and —vv to the
momentum equations for u and v in outermost quarter of the domain in order to diminish the
amplitude of disturbances that may reach the outer boundary. The damping coefficient increases

with radius according to
1 —
yo L (1 ~ cos (M))
271 R—ry4

where rg is the radius at which the Newtonian damping is first applied and 71 = 360 s.



