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ABSTRACT

The problem of explaining the surface pressure rise in simple balanced models of fronts, discussed at length
by Sutcliffe, is reexamined. It is shown that air mass models for steadily translating fronts (including the Margules’
front) are dynamically consistent, except along a vertical line above the surface front, only if there is vertical
motion (subsidence for a cold front, ascent for a warm front) in the warm air that overlies the cold air. In this
case, the local post-frontal pressure rise in a model cold front and the pre-frontal pressure fall in a model warm
front can be attributed to advection. However, the presence of the vertical motion is a limiting factor in the
applicability of such models.

The analysis resolves an apparent inconsistency between the surface pressure changes computed in Boussinesq
models and the prediction of a theorem of Brunt.

Irrespective of the Boussinesq approximation, it is shown that, in the model, the surface pressure change at
any fixed location bears no relation to the variation of surface pressure normal to the front at any given instant.
This would imply that it is inappropriate to infer space cross-sections of pressure from observed time series at
a single station, even for a steadily translating front. The result highlights a further limitation of balanced air
mass models when applied to fronts in the atmosphere.
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1. Introduction

The earliest and perhaps the simplest model for a
front is that of Margules ( 1906) in which the front is
considered to be a stationary sloping discontinuity sep-
arating two air masses of uniform, but different tem-
peratures. The motion in these air masses is assumed
to be geostrophic and parallel with the surface front,
the vertical motion being everywhere zero. Frictional
and diffusive processes are excluded. With these as-
sumptions one obtains a diagnostic equation relating
the slope of the front to the difference in mass flux and
difference in density, or temperature, between the two
air masses [see Eq. (5) below]. In essence, this rela-
tionship is an expression of thermal wind balance across
the front.

In the author’s experience, there is a widespread be-
lief that Margules® solution may be extended to moving
fronts, cold or warm fronts, simply by incorporating a
uniform geostrophic wind component normal to the
surface front. However, there are immediate difficulties
with this approach. Basically, the presence of rotation
precludes the introduction of a Galilean coordinate
transformation in which the dynamics represented by
Margules’ solution is preserved, while the front trans-
lates at uniform speed ¢ normal to its line of intersection
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with the ground. This translation velocity would lead
to an unbalanced Coriolis torque, fc, in the along-front
direction, where [ is the Coriolis parameter. Even if
we postulate the existence of an along-front pressure
gradient in geostrophic balance with this torque, in
which case the surface isobars no longer remain parallel
with the front, it is still not possible to explain the
translation of the front (Sawyer 1952, p. 170).

The foregoing problem was elucidated by Sutcliffe
(1938) who noted that, in a geostrophic flow u, over
level ground with f = const, the surface pressure field
Ps cannot change locally. This result, which actually
dates back to Jeffreys (1919), follows from the pressure
tendency equation
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where p is the air density, u, is the horizontal wind
vector, w,, is the vertical velocity component at large
heights and g is the acceleration due to gravity. Under
the stated conditions, V,«(pu;) = V,-(pu,) = 0 and
We = 0, in which case dp/dt = 0. Brunt (1939, pp.
308-309) showed that this is true even when there is
an air mass discontinuity and it would appear that a
geostrophically balanced translating front could in no
way explain the surface pressure changes normally ob-
served with frontal passages. Significantly, Brunt’s
analysis assumes that there is zero vertical motion on
both sides of the discontinuity, but it applies, neverthe-
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less, to the basic Margules’ model. We show below that
by relaxing this constraint it is possible to construct a
more dynamically consistent extension of Margules’
model to a translating front. We consider also the con-
sequences of making the Boussinesq approximation
wherein the foregoing difficulties are swept under the
carpet.

The solutions for translating fronts, while no more
realistic than those for stationary fronts, are of interest
from a theoretical and historical standpoint and high-
light the limitations of balanced air mass models’ as a
whole in describing the behavior of fronts in the at-
mosphere.

2. The translating Margules’ model

The inconsistency in the naive extension of Mar-
gules’ solution to a translating front described above
is clearly exposed by considering the surface pressure
distribution. Let us choose a coordinate system (x, y,
z) with z vertical and let the surface front lie along the
y-axis at time 1 = O with the cold air occupying the
region x < 0, 0 < z < —Xx tand, 6 being the slope of the
frontal interface. Let p;, p1, u, and p,, P2, u; denote
the density, pressure and total air velocity in the warm
and cold air masses, respectively, p; and p, being con-
stant scalars and u,, u, constant vectors; and let n, k
denote unit vectors normal to the sloping frontal dis-
continuity and to the earth’s surface, respectively.

The assumption of geostrophy implies that

u = (pif) "'k X Vp,, (2)
where u;; = (u;, v;, 0) is the horizontal component of
w; = (u;, v;, i), and
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Equation (3) follows immediately from the full con-
tinuity equation V-u; = 0.

In the stationary front, the cross-front velocity com-
ponents u; are both zero, implying that dp,/dy = 0 (i
=1, 2}, and hence the isobars are parallel to the front
in both air masses. The vertical velocities w; are zero
also, consistent with (3) together with the surface
boundary condition that w; = 0 at z = 0. It follows that
the pressure is hydrostatic whereupon
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where 4(x) is the height of the frontal surface and g’
= g(p2 — p1)/p2 is the reduced gravity. Margules’ cel-
ebrated formula follows immediately from (2), namely

(3)

(4)

! A brief review and references can be found in Smith and Reeder
(1988).

NOTES AND CORRESPONDENCE

1923

,0h
f(v,—av))=¢ o’ (5)
where a = pi/pa>.

Suppose now we were to add a uniform geostrophic
wind ¢ = u; = u, to both air masses. Then the surface
isobars would cross the front with a cyclonic change
of direction at the front, itself. Consider the case of a
cold front ¢ > 0, moving towards some point A. Until
the front arrives at A the pressure could not change
because the flow in the warm air is geostrophic; nor
could it change after the front had passed because the
motion in the cold air is geostrophic also. Clearly, such
a model is unable to explain either the observed pres-
sure rise following the passage of a cold front, or the
tendency for it to fall as the front approaches.

This moving cold front model has a further defi-
ciency. The kinematic condition that the normal ve-
locity is continuous across the frontal discontinuity is

(6)

When there is no vertical motion, this implies that u,
= u, and it follows then from Eq. (2) that dp,/dy
= (1/a)dp,/dy; i.e. the along-front pressure gradient
is greater in the cold air. This means that at most one
isobar can join across the front and that, at other po-
sitions along the front, the pressure is discontinuous
(since of course o < 1). This would imply an infinite
horizontal pressure gradient force which, in turn, would
drive an infinite acceleration. This is clearly unphysical!
If we insist that the pressure is continuous across the
front for all values of y, it follows that dp/dy must be
continuous also and hence from (2) that

u;*n=upn.

Uy = au(<uy). (7)
Then the kinematic condition (5) implies that
wp = ul(l —a)ah/ax, (8)

in warm air, behind the surface front position.

In the warm air ahead of the front, w; = 0 as before
in order to satisfy the surface boundary condition. Since
0h/dx < 0 for a cold front, Eq. (8) implies that, in the
model, there must be. subsiding motion in the warm
air overlying the cold air, while the opposite is true for
a warm front. Thus it would appear that a more dy-
namically consistent, balanced model for a translating
front has a cross-front flow pattern as shown in Fig. 1.
Typical vertical motions implied by Eq. (8) are rather
small, characteristic more of the broader-scale subsi-
dence behind a front, rather than motions on the frontal
scale, itself.

The moving front model is not entirely consistent
immediately above the surface front where w, is dis-
continuous. This is manifest in a sharp bend in the
streamlines (Fig. 1a). Note, that the continuity equa-
tion is not violated along this line although the balance
approximation would be invalid in its neighborhood.
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FIG. 1. (a) Vertical cross section of the moving Margules’ cold
front model when there is subsiding motion in the warm air overlying
the frontal discontinuity; (b) corresponding spatial cross section of
surface pressure at a fixed time; (c) time series of surface pressure at
a fixed location, initially ahead of the front.

Accepting the need for subsiding motion in the warm
air overlying the cold air, we are able to account for
an increase in surface pressure following the passage
of the model front, at least mathematically. Thus, if
Wo = —w; > 0in Eq. (1), the second term on the right
is positive, implying an increase in the surface pressure
with time. Using (8) it follows that

) oh
R RO (9)
This shows that the surface pressure rise can be asso-
ciated with the horizontal advection of cooler and
therefore denser air. In essence, by taking subsidence
into account, the cross-front component of flow behind
the front does not have to be so large as it otherwise
would be to ensure a positive mass flux into any vertical
column intersecting the cold air, as a part of the out-
going mass flux from the column is compensated for
by the subsidence (cf. Brunt 1938, §185, Fig. 74). Thus,
recognition of the vertical motion is essential to explain
the post-frontal pressure change, but the existence of
such motion limits the applicability of the model in
practice (see below).
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An important result highlighted by this model is the
absence of any relationship between the cross-front
pressure distribution at a particular time and the time
series of surface pressure at a given location. While the
spatial pressure distribution at any fixed time shows
the surface front coincident with a pressure trough (Fig.
2b), the time series of surface pressure at any place
shows a quite different behavior (Fig. 2¢). In the latter
case, the surface pressure at a fixed station remains
uniform until the front arrives because the flow ahead
of the front is geostrophic. Following the passage of
the front, the pressure rises steadily according to Eq.
(9) as the cold air depth increases.

If the surface front lies along the line x = u,f at time
t, the surface pressure distribution follows directly by
partial integration of (2) and (9), using (4) to eliminate
dh/dx, and can be written

Soi(vix —wy), for x> u

Ps=Dpo+ 1\ flpawa(x — wat) — wa(p2y — pront)],

for x> uy, (10)
where p, is a constant. Note that dp,/d7 is a constant
so that, following the passage of the front, any two
isobars move at the same rate towards positive y,
maintaining their spacing and orientation, consistent
with a uniform geostrophic wind.

The lack of a relationship between the spatial and
temporal variation of surface pressure would appear
to have implications for the interpretation of pressure
time series at a given station. It is commonly assumed
that, to the extent that a front moves steadily, it is
permissible to make a time-to-space conversion of the
various frontal parameters (e.g. wind speed compo-
nents, potential temperature etc . . .) by multiplying
the time by the frontal speed, thereby obtaining a space
cross-section of the front. The foregoing results show
that, at least in the model, this is not possible with
respect to surface pressure. In essence, this result is not
new; indeed Sutcliffe (1938) emphasized the fact that
a pressure field cannot be advected by a geostrophic
flow and that extratropical cyclones move by a process
of development in which ageostrophic circulations play
an essential role. However, it seems worth emphasizing
that the result is true for fronts. Thus, the commonly
observed pressure fall before the arrival of a cold front
must be attributed to a net divergence of the ageo-
strophic wind; it cannot be captured in a balanced air
mass model. Such processes are, of course, contained
in models that include frontogenetic processes (Hos-
kins 1982).

We may not infer that the time-to-space conversion
of surface pressure is inappropriate to steadily-trans-
lating fronts in general (assuming that these exist!).
The foregoing problems are a reflection of the as-
sumption of strict geostrophy in the model. It would
be possible, for example, to allow py in Eq. (10) to vary
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F1G. 2. Configuration of the uniformly translating cold front model
of Davies (1984): (a) vertical cross section showing the wedge of
cold air of variable / (x) depicting the motion in each air mass. The
arrows indicate the cross-front air flow; the vector tails, x, indicate
the sense of the along-front motion in the warm air and in the cold
air far from the front; (b) plan view of the surface isobars and flow
direction corresponding with (a); (¢) across-front variation of surface
pressure at time ¢ = 0; (d) time series of surface pressure at x = 0,
taken to be the surface front position at 1 = 0.
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linearly with time so that dpy/dt = — fusp,v;. Then in
the warm air, dp,;/0t + u,dp,/dx = 0, whereupon the
surface pressure field does translate with the front.2 We

2 Note: the issue of time-to-space conversion is not resolved simply
by rotating the x axis so that it points in the direction of flow in the
warm air. Although the model prediction of zero prefrontal pressure
change is then consistent with the (zero) spatial variation, a linear
function of time po(z) = |uz|z sinf[—p,|u|cosa + pz|uy| cos(2a
— 6)] must be included to allow for a time-to-space conversion of
surface pressure behind the front. Here § and « denote the wind
directions in the warm and cold air, respectively, measured counter-
clockwise from the (original) positive x-axis.
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might argue that such an externally imposed pressure
variation po(t) models the ageostrophic redistribution
of mass that necessarily accompanies a translating front
in the atmosphere. However, there is no basis for ac-
counting for this variation of py(¢) within a geostrophic
model and this is evidently an important limitation of
such models.

Notwithstanding the possibility of choosing po(¢) as
described above, there is no guarantee that this is the
“correct” choice for characterizing the ageostrophic
redistribution of mass. Thus our results still signal cau-
tion in the interpretation of atmospheric data. Indeed,
they highlight potential errors in inferring the spatial
pressure variation across a front from its time variation
at a given place as the pressure field is not advected by
the cross-front geostrophic flow. Such time series con-
tain only information about ageostrophic motions and/
or of differential temperature advection (possibly geo-
strophic).

The above results are readily generalized to all
steadily translating air mass models of fronts in which
the slope of the frontal discontinuity, d4/dx, is non-
uniform. One such example is discussed below.

3. Davies’ Boussinesq models

Davies (1984) obtained a solution for a steadily
moving cold front in which the cold air depth A(x, ?)
is given by

h(x,t) = H[1 — exp{(x — ct)/Lr}], (11)

where Lz = (g'H)'/?/f is a Rossby radius of defor-
mation for the flow and H is the depth of the cold air
at large distances behind the surface front (see Fig. 4).
Davies invokes the Boussinesq approximation (Spiegel
and Veronis 1960) and ignores the difference in density
between the two air masses when computing the pres-
sure gradient force per unit mass. Hence the inconsis-
tency in the along-front pressure gradient described
earlier does not occur and, using our previous notation,
u; = > = ¢, w; = 0. Nevertheless it is pertinent to ask
how the surface pressure can change with the passage
of the front? According to Jeffreys’ result and Brunt’s
extension thereof described in section 1, it should not
change locally since u; and u, are both in geostrophic
balance. The problem; which applies to all Boussinesq
models, is resolved as follows. In the Boussinesq ap-
proximation one sets p = p + p’, where p is an ap-
propriately defined mean density and p' is the deviation
therefrom. Basically, p’ is then ignored unless multi-
plied by g, whereupon (1/p)V,p is approximated as
(1/p )V,p and the continuity equation by

V-u=0. (12)
Then in (7), « is unity (to zero order in p’/p ) and in
(8), wy is zero. Using (1) and (12) the surface pressure
tendency
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This equation states that surface pressure changes are
associated with density advection and is analogous to
Eq. (9), which was derived without approximation for
the model with vertical motion in the warm air over-
lying the cold air. Clearly, in the extension of the Bous-
sinesq model to O(p’/p ), such vertical motion must
exist also. It follows that, in the extension of Davies’
model to O(p'/p ), w; will be nonzero and given by
Eq. (8). Furthermore, the local post-frontal pressure
rise is given by Eq. (9) and there is no pre-frontal pres-
sure change as before. The cross-front and temporal
surface pressure variations are sketched in Figs. 2c and
2d. The complete surface pressure distribution is given
by

Ps=Dpotfp(vyx—uy), x>ct

= po+fpvax —uy+ fLg?
X {1 —exp[(x — ct)/Lrl}, (14)

As in section 2 it would be possible to choose py(¢)
so that the surface pressure field translates with the
front, without affecting other features of the solution.

x <ct.

4. Pressure coordinate formulations

The foregoing inconsistencies do not appear explic-
itly in the formulation of the analogous problems using
pressure or some function of pressure as the vertical
coordinate. However, it would be reasonable to assume
that they occur implicitly, as in the Boussinesq models.
This is difficult to prove, but it seems likely that they

" are concealed by the usual application of the surface
boundary condition w = 0 at p = p,; w being the ma-
terial derivative of pressure. As is well known, this is
not identical with the condition that w = 0 at z = 0 in
a height-coordinate model, even though it appears
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generally to provide a useful approximation thereto
for many purposes.

5. Conclusion

A long known dynamical inconsistency in the for-
mulation of balanced air mass models of fronts has
been explored. The inconsistency can be resolved only
at the expense of making physically unrealistic as-
sumptions about the vertical motion in the warm air
that overlies the cold air. The vertical motion must be
invoked to account for the post frontal pressure rise
associated with a cold front, or the prefrontal pressure
fall associated with a warm front. Even for steadily
translating models, there is, in general, no relationship
between the pressure time series at a given station and
the spatial variation of surface pressure at a given time.
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