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ABSTRACT

The cyclostrophic and hydrostatic adjustment of simple one-layer and multilayer vortex flows to the
local removal and/or redistribution of mass and angular momentum are studied, and a detailed physical
interpretation of the dynamics of adjustment is given for the one-layer model. The calculations provide
insight into possible responses of tropical cyclones to modification by cloud seeding and facilitate an ap-
praisal of the Simpson-Malkus modification hypothesis.

Calculations for two- and three-layer models show that the maximum tangential velocity is increased
whether or not mass transfer takes place predominantly inside or outside the radius at which the maximum
occurs, and the central surface pressure decreases due to subsidence at one or both interface levels.
However, the magnitude of these effects are comparatively small in relation to the strengths of the induced
meridional circulation and corresponding changes in tangential wind speed outside the core, at, or beyond,
the radii at which mass transfer occurs. Moreover, the estimated maximum change in tangential wind
speed that might be produced in a tropical cyclone by following the seeding procedure suggested by Simpson
and Malkus is small compared with observed natural variations.
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The Cyclostrophic Adjustment of Vortices with Application to Tropical Cyclone Modification

1. Imtroduction

Project STORMFURY was initiated in the United
States in the early sixties to examine the feasibility
of moderating the high surface winds in tropical cy-
clones (Gentry, 1969). The principal method under
consideration involves the use of aircraft to seed
certain areas of convective cloud in the cyclone with
silver iodide. The introduction of large numbers of
microscopic crystals of this substance into the super-
cooled region of a convective cloud initiates freezing,
giving rise to the release of latent heat of fusion. This
gives the cloud additional buoyancy at upper levels
so that, under suitable environmental conditions, it
is induced to grow when it might otherwise not have
done so. An early hypothesis on tropical cyclone
modification hinges on the observation that the larg-
est horizontal pressure gradient at low levels occurs
just inside the eye wall region and coincides closely
with the radius of maximum tangential wind speed
(in the inner region of a cyclone, the tangential wind
is approximately in cyclostrophic balance with the
radial pressure gradient). Simpson and Malkus (1964)
suggested that by seeding the eye-wall clouds it might
be possible to reduce the local horizontal pressure
gradient, itself determined hydrostatically by the
temperature field aloft, and that the cyclone might
adjust cyclostrophically with the pressure gradient,
leading to a reduction in maximum tangential wind
speed.

Because of the tight coupling between the tan-
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gential and meridional components of vortex motion
through the pressure field (Morton 1966), arguments
of the foregoing type are necessarily incomplete and
therefore tentative pending verification, either by
field experiment or numerical model studies or both.
In fact, for reasons discussed succintly by Rosenthal
(1974, pp. 543-545), the above seeding strategy ap-
pears unlikely to be effective, but a variation of it
does show considerable promise. In this, the clouds
in the first rainband outward from the radius of maxi-
mum tangential wind are seeded, the idea being to
create a second eye wall at a larger radius. It is
hypothesized that this would not only serve to re-
duce the low-level moisture flux to the original eye
wall, thereby weakening it, but if the inflowing air
ascends at a larger radius, partial conservation of
angular momentum in the inflow layer requires that
the maximum tangential wind speed attained be re-
duced also. There is evidence from both numerical
model studies (Rosenthal, 1971, 1974) and from an
actual seeding experiment on Hurricane Debbie in
August 1969 (Gentry, 1970; Hawkins, 1971) that a
modest reduction in wind speed can be obtained by
seeding a storm in this way. However, there is some
way to go in understanding fully the chain of inter-
actions which occur following seeding; for example,
it is not known what effect seeding has on the cy-
clone’s warm eye. But the eye itself undoubtedly
plays a major role in the dynamics and evolution of
the vortex; indeed without it, such low central pres-
sures as are observed could not occur (Riehl 1954,
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F1G. 1. One-layer vortex flow configuration.

p. 316). There is clearly an urgent need for theoretical
investigations relating to these problems and such
is the motive for the present study.

In this paper we begin from square one by in-
vestigating the cyclostrophic adjustment of simple
one-, two- and three-layer vortex flows following
the removal or redistribution of mass and angular
momentum. The problem is similar to the classical
geostrophic adjustment problem formulated by
Rossby (1937), whereas the method of solution fol-
lows a well-known approach which appears to have
been used first in the context of atmospheric dy-
namics by Eliassen (1952). '

2, One-layer vortex

We consider here cyclostrophic and hydrostatic
motions of an axisymmetric vortex, with its axis
vertical, in a shallow layer of fluid having uniform
density p and a free upper surface. Frictional effects
may be modeled by a distributed torque r per unit
mass. The layer depth is A(r, ¢), r being the radial
distance from the axis of rotation and ¢ the time. In
hydrostatic motion the horizontal pressure gradient
is independent of the vertical coordinate z and hence
the radial and tangential velocity components « and
v are functions of r and ¢ only, provided they are
independent of z initially. We shall be interested
primarily in the response of an initially steady-state
vortex with # = 0 and a prescribed radial distribu-
tion of v, when mass is extracted in radial intervals
(r, r + dr) at the rate pS(r)dr. This flow configura-
tion is sketched in Fig. 1. Note that the removal
of mass in the one layer model may be thought of as
analogous to the addition of heat by seeding in a
tropical cyclone; both effects serve to reduce the
local surface pressure according to the hydrostatic
equation.

With the cyclostrophic approximation, the radial
momentum equation takes the form
oh T?

=_—, 2.1)

r3

v2

¥ or

where I' = rv is the angular momentum of a fluid
particle and g the acceleration due to gravity. The
tangential momentum equation can be written in

flux form as

0
E(hl“)— -

140
2L (ruhl) + Z b - ST,, (2.2)
r-or P
where I', may differ from I only when S is negative,
i which case it represents the angular momentum
of added fluid. These equations are supplemented
by one for mass conservation,

oh 19

-—— = — ——(ruh) — S.

61“ r or _
By forming 4/d¢ of (2.1) and using (2.2) and (2.3) to
eliminate time derivatives, we obtain an equation for
the radial motion « as a function of the instantaneous
radial distributions of 4 and T; viz.,

(2.3)

2
ar\r or grd ar
= _£+2_F[(r—rs)§_+l] . (2.4)
ar  grd h p

The radial motion determined by this equation is
just that which is required to keep the vortex in
hydrostatic and cyclostrophic balance as it adjusts
in response to the extraction of mass and to the
application of nonzero torques (note that the terms
representing these effects are precisely the non-
homogeneous ones and if § and 7 are both identi-
cally zero, so is the solution for # which satisfies the
appropriate boundary conditions given below).

. Henceforth, we shall concentrate on situations
where 7 =0 and S = 0, implying I, = I". Then,
following multiplication of (2.4) by Ar2, the elimina-
tion of 8I'%/ar using the radial derivative of (2.1) and
a little algebra, (2.4) reduces to

i 2] - s 25
or or\r ar
Suppose that mass flux pQ; is extracted from the
flow at radius r,. Then
Qs

—— 8(r — ry),
27,

(2.5)

S = (2.6)

8(x) being the Dirac delta function, and (2.5) can
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be integrated twice to give ® 1 9

8 g Q- _ 9 (hr) (2.90)
27ro L Or r=ro Using (2.1) as it stands, and also integrating from

» [ * dr’ H(rq — r)
max(r,ro) th,s

where H(x) is the Heaviside unit function. Here

],aﬂ

horo

boundary conditions ¥ = 0 at r = 0 and u — 0 as-

r — o have been used. The former is required by
symmeiry and the latier ensures a finite volume in-
flux at large radial distances where h — h.,, a finite
constant.

From the knowledge of u, the local rate of change
in tangential wind speed can be calculated from the
appropriate form of the tangential momentum equation

LA 2.8)
ot r or

With § given by (2.6) it is physically obvious that
sgn(u) = sgn(ry — r) and, therefore, provided the
vortex is not centrifugally unstable (i.e., 8I'/dr < 0),
it follows from (2.8) that v increases with time for
r > r, and decreases for r < ry. Hence, if ro > rpp,
where r,, is the radius at which the maximum tan-
gential wind v,, occurs, then v, will decrease with
time; alternatively, v,, will increase with time if r,
< rp. This is one argument in favor of seeding a
tropical cyclone at radii larger than the radius of
maximum tangential wind (but see Section 3). The
foregoing results also explain the changes in the
radial distribution of tangential wind at the surface
in Rosenthal’s numerical model experiments (Rosen-
thal, 1971; see especially Figs. 7 and 14).

The salient features of the radial velocity distribu-
tion are reflected in the volume fluxes Q; and Q,,
at radii o — e and ry + €, respectively, where < is
small and positive, and the volume flux at infinity
Q0. (see Fig. 2). From (2.7) it easily follows that

Qo0 _ roho 2 (hr) A’ 2.0)
Qs i or r=ro Jro h?r'?
g" =1~ g° , (2.9b)

ro to infinity to give h,, (2.9¢) can be rewritten as

O
Qs

where I’y = I'(ry, t). Hence, unless the vortex is un-
stable to radial perturbations (i.e., 8I'/ér < 0), Q.

=1+

J(W‘Mﬂwﬂm
r's

ro

ghw

. < Q, with equality if and only if the circulation is

uniform for r = r,. In the latter case, it is easily
verified that Q, and Q; are both zero. In this special
case the vortex is neutrally stable with respect to
radial displacements of fluid particles so that the re-
placement of withdrawn fluid entirely by a mass
flux convergence from large radial distances requires
no adjustment of the vortex and no net work done
on it; i.e., the rate of extraction of kinetic energy,
Yapv®Q,, is just balanced by the flux of ‘available’
potential energy at large distances, pg(he — h)Qw.
In general, when 8I/9r > 0 for r = r,, the propor-
tion of mass efflux supplied from infinity is a mono-
tone decreasing function of circulation gradient ac-
cording to (2.10), and increasing proportions are sup-
plied from the vortex interior resulting in a lowering
of the free surface.

In a tropical cyclone, the radial variation of tan-
gential wind speed at radii greater than the radius
of maximum wind varies from storm to storm, but
can usually be approximated by an inverse power
law r=%, where x lies between ~0.5 and unity (see,
e.g., Riehl, 1963, p. 12; Anthes, 1974, p. 497; Sheets,
1980). We have discussed above the rather special
case x = 1 and consider now the other extreme in
which the tangential velocity profile has the form

V17 ;s O0<sr=<r,

Unrmlr) "2,

The dependence of Q,/Q;, @,/Q, and Q../Q;, on the
mass extraction radius r, are illustrated for this pro-
file in Fig. 3 for three values of the dimensionless
parameter v,%/gh., denoted by y. This figure also
shows the radial variation of /A, for each value of y.

o(r) = [ (2.11)

Fp < r <o
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.F1G. 3. Volume flux ratios Q¢/Q,, Q:/Q; and Q../Q; as functions
of nondimensional mass extraction radius ry/r,, and layer depth
h as a function of nondimensional radius r/r,, in the cases: (a)
v =0.1; (b) y = 0.3; (c) ¥y = 0.6. Note that Q;/Q, = 1 — Qo/Qs.

In general, Q,/Q; is a relatively small fraction of
Qo/Qs—at most 10% for y < 0.6 and considerably
less than 0.8% for y < 0.5 when r,, < r,. Moreover,
the ratio Q;/Q, decreases with decreasing y and with
increasing ry/r,, for r, = 0.7r, (in tropical cyclones,

rm occurs only just outside the relatively cloud-free .

eye region so that considerations of mass extraction
for ro < 0.9r,, are purely academic!). If we regard
the depth of the one-layer model as corresponding
with the height of the 500 mb level —typically 5-6
X 10® m—in an actual storm, and take representa-
tive values for v, and r,, as 40 m s**and 4 X 10* m
(40 km), respectively, v is less than about 0.03, in
which case Q,/Q, is less than 0.5%. Thus to the
extent that the analogy between the effect of seeding
a storm and the removal of mass in the one-layer
model is valid, we are led to infer that the principal
effect of seeding on the meridional circulation oc-
~ curs at radii larger than the radii of seeding, with an

insignificant effect at smaller radii. As shown below,
this conclusion applies also to the change in tangen-
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tial wind distribution, given by (2.11), even though
the radial gradient »—'0I'/dr in (2.8) is relatively large
inside the radius of maximum tangential wind.

Fig. 4a shows the induced radial velocity (m s=1!)
and the corresponding tangential wind tendency
(m s~'day™!), as functions of radius, in the one-layer
vortex for which v,, and r,, are as given above, y
= 0.032, and mass extraction takes place at a radius
ro of 46 km (1.15r,). These parameter values are
broadly appropriate for a tropical cyclone vortex.
The curves are calculated from analytic formulas
obtained from Egs. (2.7) and (2.8) in conjunction
with the tangential velocity profile (2.11), and are
based on a volume flux Q, calculated as follows.
It is assumed that as a consequence of seeding, the
temperature between 500 and 300 mb is increased
in one hour by 2 K, a figure quoted by Rosenthal
(1971, p. 416). The corresponding reduction in sur-
face pressure, computed hydrostatically, would be
equivalent to a lowering of the 500 mb surface by
~45 m. Assuming that seeding is carried out in an
annular region of mean radius ry; and of width, say,
4 km, Q, takes the value 7(48% — 44%) x 105 x 45
+ 3600 = 1.4 x 107 m® s, It is seen that, at radii
< r,, the radial flow is outward and therefore dv/9¢
is negative, but both are two orders of magnitude
smaller than for r > r, and their graphs coincide
with the abscissa on the scale of the diagram. Thus
the reduction in maximum tangential wind is insig-
nificant. At radii larger than r, the radial flow is
inward and 8 v/dt is positive, and it is quite clear that,
in reality, if seeding leads to radial inflow outside
the seeding annulus, the tangential wind speed will
increase in that region.

Similar curves to those in Fig. 4a are shown in
Figs. 4b and 4c¢ for triangular distributions of mass
extraction rate centered-at radii 0.95r,, (38 km) and
1.15r, (46 km) with values of Q, calculated as above
[in the former case, the area of seeding is only 7(40?
— 36%) x 10® m?]. These calculations are based on
numerical integrations of Eq. (2.5) by a simple finite-
difference procedure outlined in the Appendix. As
in Fig. 4a, there is only weak outflow at radii less
than those at which mass extraction occurs, but in
both cases, there is an increase in maximum tan-
gential wind speed due to the fact that the radial
flow is inward at the radius of tangential wind maxi-
mum. Thus in these calculations, the effects of mass
removal are counter to the original seeding hypothe-
sis of Simpson and Malkus (1964). Nevertheless,
the maximum predicted changes in tangential wind
speed again are small, even compared with observed
natural changes in tropical cyclones.

The numerical calculations by Rosenthal (Rosen-
thal, 1971, see e.g., Figs. 7 and 8) also show an
increase in wind speed, up to 20-25%, exterior to.
the seeding annulus following a simulated seeding,
but as well, they show a small, although significant,
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F1G. 4. Induced radial velocity # and corresponding tangential velocity tendency v, as functions of
nondimensional radius r/r,, when y = 0.032. (a) Mass extraction at radius r, = 1.15r,, and volume flux
Qs = 1.4 X 107 m® s7'. (b) Symmetrical triangular distribution of mass extraction centered at r,

= 0.95r, and Q; = 1.2 x 10" m?® s™; for r/r, < 0.7, u = 1.36 x 1075(r/r,) m s~ and v, = —0.39
x 107*(r/r,) m s7* day~! (not to scale). (c) As in (b) except r, = 1.15r, and @, as in (a); also, for

rirp, < 0.9, 4 = 0.69 X 107%r/r,) ms™ and v, =

—0.13 x 10%(r/r,,) m s™! day~!. The position and

distribution of volume flux are indicated by vertical arrows (not to scale).

decrease in wind speed at smaller radii, including
a decrease in the maximum wind speed. Yet in a
simulated seeding experiment using a balanced
model, Sundqvist (1970b) observes that (p. 509)
“‘there is no noticeable reduction of the maximum
(tangential) wind. . . .”” Thus, although it is quite
possible that the adjustment processes described in
this paper are not the most important ones vis-a-vis
tropical cyclones, the results are broadly consistent
with the more detailed numerical calculations cited
above. Of course, one difficulty in attempting more
detailed comparisons of the one-layer model with an
actual tropical cyclone, or a numerical simulation
thereof, lies in the degree of arbitrariness in select-
ing an appropriate layer depth.

When interpreting the present calculations, it is
tempting to attribute the comparatively weak re-
sponse of the vortex core to the relatively strong
centrifugal stability of the core in relation to that
outside. However, taken together, Egs. (2.9a) and

(2.9b) show that the outward displacement of fluid
at radii < ry, characterized by Q,/Q,, is dependent
only on conditions at, and external to, r, and not
on those in the core itself. To understand this result,
it is helpful to consider first the situation in which
the circulation outside the radius of seeding is uni-
form. In this case, we have seen that withdrawn
fluid is replaced entirely by a mass flux convergence
from large radial distances; thus, by conserving
angular momentum, rings of converging fluid in-
crease their rotation speed at just the rate required
for the centrifugal force they experience to remain
in balance with the existing local radial pressure
gradient. In other words, cyclostrophic balance is
maintained without the need for local depth changes,
including the fluid depth at ro+, just outside the
extraction radius. Without any depth change at this
radius, the fluid interior to r, experiences no net
radial force and therefore no motion occurs as pre-
dicted by (2.9) and (2.10) (i.e., when I' = I, for r
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>ro, Qo = Qw = QOs;and Q; = 0). We have seen also
that for an increasing circulation gradient external
to ro, O < Q, [from (2.10)], and in this case, the
increase in centrifugal force experienced by rings of
converging fluid necessitates local depth changes to

maintain cyclostrophic balance. Accordingly, Q. °

< @, and there is a lowering of the free surface,
in particular at ry+; the fluid interior to r, responds
accordingly by flowing outward, a proportion of it
[given by.(2.9b)] feeding the mass sink. Thus, the
core flow, or more specifically the flow inside the
annulus of mass extraction, can be regarded as a
passive response to changes in vortex structure ex-
ternal to this annulus. Why then does the apparently
strong centrifugal stability in the core not play a clear
role in the core response? It turns out that the key
parameter involved here is not the centrifugal sta-
bility alone, but its ratio to the gravitational stability
associated with the free surface. When the latter is
comparatively large, the free surface is quasi-hori-
zontal, but when it is relatively small, radial depth
gradients, proportional to centrifugal forces through
Eq. (2.1), are large. It is shown below that, in the
parameter range of interest here, the predicted re-
sponse of the core, in which the induced outward
motion increases linearly with radius [see Eq. (2.7)],
is a reflection of the quasi-horizontal constraint on
the motion due to the comparatively large gravita-
tional stability, together with the geometrical con-
straint of axial symmetry; the rotational stability
of the core being insufficient toisolate the symmetry
axis from influences near r,,. This is best brought out
by considering the radius of deformation, a measure
of the lateral range of influence of disturbances in a
rotating fluid. For an axisymmetric swirling flow of
homogeneous fluid with mean depth H on anf-plane,
" the deformation radius is defined locally by the for-
mula L(r) = VgH[&(r){(r)]"'?, where &(r) = 2v/r
+ fand {(r) = r'd(vr)/dr + f[c/f the ratio of coef-
ficients (C/A)'? in the excellent discussion of the
meridional circulation equation for a balanced, con-
tinuously stratified vortex given by Sundqvist (1970a,
pp. 362-363)]. Note that L(r) reduces to the more
familiar form VgH/f when max[2v/r, r~'0(vr)/8r]
< f, and to the form [gH/(r—28I'%/8r)]'? when f = 0,
as in the present problem. Thus a scale L, for L(r)
in the vortex defined by (2.11) is given by Lg2
= gHr,/v,%, and hence (r,/Lg)* = v,2/gH =y,
which, for the vortices studied here, is less than or
order unity. In other words, the radius of deforma-
tion is comparable with, or larger than, the core
width so that influences just outside the core are
‘‘felt’” at the axis. This is inevitable as the alternative
parameter regime, where r,,/Ly is large compared
with unity, is that in which the vortex rotation is so
strong as to evacuate all fluid from the vortex centre,
as in a strong bath tub vortex. We can see this by
integrating the cyclostrophic equation (2.1) between
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the axis and r,,; with v, ¥ and & nondimensionalized
with respect to v, r,, and k., respectively, and tak-
ing H = h,, we obtain

h(0) = h(l) — (2_"')2 Jl 2,

R o I

and since quantities other thanr,, and L are of order

unity, it is evident that the computed layer depth is
negative for L, < r,,, implying an evacuated vortex
core. :

In an appraisal of the Simpson-Malkus modifica-
tion hypothesis, Rosenthal (1974, p. 543) points out
that, even if the eye-wall clouds are suitable for
seeding, a difficulty arises in that estimates of tem-
perature increase to be realized from the released
latent heat of fusion assume a constant pressure
process, whereas the air would be expected to follow
an ice pseudoadiabat with substantial amounts of *
heat being converted into potential rather than in-
ternal energy. Furthermore, he raises the possibility
that since the eyewall drives the storm’s transverse
circulation, seeding this region alone might accelerate
the circulatiorn, thus providing a more rapid inflow of
both angular momentum and water vapor to the eye-
wall region. Although the one-layer model is entirely
inadequate to address these concerns, it does high-
light a limitation of the type of cause and effect
argument, exemplified by the. Simpson-Malkus hy-
pothesis, when applied to such tightly coupled flows
as vortices. Indeed, the equivalent Simpson-Malkus
hypothesis for the model is clearly inapplicable,
for as mass is extracted, it is continuously replaced
by radial convergence as the vortex adjusts to main-
tain cyclostrophic and hydrostatic balance and at no
time are the local pressure, and hence the local pres-
sure gradient, significantly reduced, as might be
inferred from hydrostatic balance arguments alone.

3. Two- and three-layer vortex -

In this section we study the adjustment of a vortex
model consisting of either two or three homogeneous
layers of fluid; this is slightly more realistic in rela-
tion to a tropical cyclone and allows the adjustment
of the eye to be investigated more fully. As the two-
layer model is a special case of the three-layer model,
we develop equations for the latter. The flow con-
figuration is shown in Fig. 5. Let A;, p;, p;, u; and v;
(i = 0, 1, 2) be the layer depths, densities, pressures
and radial and tangential velocities, respectively,
and let H = hy, + h,; + h, be constant. We assume
that the pressure at level H also is constant and
that there is no rotation in the uppermost layer (i.e.,
vy = 0); essentially, the interface between layers 1
and 0 may be regarded as the tropopause. The radial
pressure gradient in each layer is easily found using
the hydrostatic equation and, since the pressure at
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no rotation h
h oy
'y
hy
o ¥
T
FiG. 5. Flow configuration of the three-layer model.
H is uniform, the pressure gradient in the uppermost oh, T — pI?
layer is identically zero. G ar gt (.42)
As an extension of the idea in Section 2, we now !
regard the effect of seeding a quasi-steady mature (8 - a) oh, TP —al® | 3.4b
storm as corresponding with a transfer of mass and B~ a or P ’ (3.4b)
angular momentum from the lower layer to the middle L ) .
layer of the model vortex. The appropriate equa- and Egs. (3.3) simplify using Egs. (3.2) to give
tions analogous to Egs. (2.1)-(2.3) are then as oT or S
follows: — = -y — + (; - Ty, (3.5a)
at or ah,
Radial momentum o, aT,
v,2 T2 ] a1 —Uy ar (3.5b)
2= Lag, a_(h‘ + hy) (3.1a) r
r ! g The final reduction proceeds in a similar manner
S Vo i} to that in Section 2. If we take 3/8¢ of Egs. (3.4),
W s &1 or (ahy + Bhy) BG-1b)  {ime derivatives may be eliminated using Egs. (3.2)
and (3.5), and, after a little algebra, including the
Continuity use of Egs. (3.4), the following diagnostic equations
oh, 13 s for u, and u, are obtained:
— = — —— (ruh) + — (3.2a) 1 1 6
a1 ror « Luy) — ——————= X — — (%) X (u; — uy)
g —a r*or
ahz—la(ruh)—S (3.2b)
ot roro ' _ 105 RGN g6
pr Or  ag(B — a)h,r?
Angular momentum
1 0
3 19 ST, Lo(us) — —— x — 202 X (uy — u
2Ty =~ -~y + = @aa) T Ty g () e )
1 68 28T, — T
0 10 == —t — 3.6b
(bl = = == (sl = STe. (.30) o or | 2B =k O
where
Here a = py/pz, B = 1 + [(p2 — p)/p:2lpo/(p1 = po)], 911 9 u; 8 . oh,
g1 = g(p, — po)/p1, and the rate of mass transfer Luy) = ——[—— (ruihi)] - —3—["3 ——] ,
from layer 2 to layer 1 is p,S(r) per unit area at orir or réarl or
radius r. (i=1,2). (3.7

The special case of a two-layer vortex model with
an upper free surface corresponds with the case
po = 0, in which case 8 = 1 and g, = g (the case
of a two-layer mode] with a rigid horizontal upper
surface is equivalent to the one-layer model studies
in Section 2, but with g replaced by g(p. — p1)/ps).

Egs. (3.1) may be combined to give

Egs. (3.6) are analogous to (2.4), but are structurally
more complex owing to the coupling terms pro-
portional to (u; — u,), the presence of which seems
to rule out the possibility of analytic solutions, even
when S(r) has the form of a delta function. Never-
theless, when the radial distributions of I';, T, A,
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F1G. 6. Induced radial velocities u,, 4, (m s™!) in the upper and lower layers, respectively, and cor-
responding tangential velocity tendencies v,,, vy, (m s~! day™'), as functions of nondimensional radius

rir,, for the three-layer model with a triangular distribution of mass transfer. (a) Mean radius of mass

transfer = 0.95r,,; volume flux from lower layer as in Fig. 4b; for r/r,, < 0.7, u,, u,, vy, vy, are linear
with slopes 8.6 x 1075, 1.1 x 1074, —9.0 X 10~%and —-2.4 x 1072, respectively (not to scale). (b) Mean
radius of mass transfer = 1.15r,,; volume flux from lower layer as in Fig. 4c; for r/r,, < 0.9, u,, u,,
vy, Uy are linear with slopes 2.1 x 1074, 1.5 x 107%, —2.2 x 1072 and 3.1 X 1073, respectively.

and h, satisfying Eqgs. (3.4), and the mass extrac-
tion velocity S(r), are given, the equations are
readily solved by an extension of the finite-differ-
ence procedure used for Eq. (2.5). The details of
the method are outlined in the Appendix.

Calculations were performed for both the two- and
three-layer models with the triangular mass transfer
functions S(r) used in Section 2 including the same
values for Q,, and with the following specifications
as appropriate:

g2=98m s‘é
po = 0.32 kg m™3
p: = 0.57 kg m™®
. ps = 0.95 kg m™®
hy=5x 103 m (5 km)

]at large radii
h2 =5%x102m

N

I, =1l
1"2
Up = 40 m s7?

Fm =4 % 10* m (40 km):

These values give

rv with v given by Eq. (2.11) and

a = 0.6

=1.5
B }for the three-layer model.
g, =43 ms™2

Note: the calculations for the three-layer model are
independent of the depth of the uppermost layer,
but the choice for p, is made with the assumption
that this value is ~5 km.

With the definitions of g,, a and B, it is easy to
show that

B — ) =gl - a), (3.8)
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and it then follows from Eqgs. (3.4) that 8h,/0r, and
hence k,, is independent of p, (i.e., A, is the same for
the two- and three-layer configurations), whereas
dh,/0r is only weakly dependent on the ratio p,/p,
for typical values. In particular, 4,;(0) is 5406 m in
the three-layer model compared with 5506 m in the
two-layer model, and in each case, 4,(0) is 4426 m.
As aresult, the quantitative differences between the
calculations for the two- and three-layer models are
relatively small' and we therefore confine our at-
tention to those for the three-layer model.

Figs. 6a and 6b show the induced radial velocity
and tangential velocity tendency in each layer when
the mass transfer distribution is centered at radii r,,
equal to 0.95r,, (38 km) and 1.15r,, (46 km), respec-
tively. In both cases, at radii larger than about the
minimum radius of mass transfer, the radial motion
is inward in the lower layer and outward in the upper
layer, the maximum velocities occurring near the
outer edge of the transfer region. As anticipated
from Egs. (3.5),% the tangential wind tendency is op-
posite in sign to the radial wind in each layer. At
smaller radii, the radial motion is outward in both
layers when the mean seeding radius is less than the
radius of maximum tangential wind, and inward in
the lower layer and outward in the upper layer in
the case r,, < r,. This last result has consequences
vis-a-vis the response of the eye in an actual tropical
cyclone, but there does not seem to be an obvious
physical interpretation for it. Note that in the former
case, subsidence in the vortex core accompanies
the simulated seeding at both interface levels and
there is a small lowering of the central surface pres-
sure (at the rate 0.16 mb day™!). However, when
ro = 1.15r,, there is very weak ascent in the core at
the lower interface level, but a large compensating
subsidence at the upper interface level so that the
central surface pressure again falls (but at the very
small rate of 0.08 mb day~'). In both cases, the
maximum tangential wind increases slightly since
u <0 at r = r,. Such behavior also occurs when
ro = 1.45r,, (not shownin Fig. 6);i.e., when the mass
transfer region is entirely outside the radius of maxi-
mum tangential wind, inflow occurs in the lower
layer at all radii and the tangential wind maximum
increases. This behavior is in contrast to that in the
one-layer model where radial outflow occurs inside
the annulus of mass extraction irrespective of the
position of ryin relation to r,,,. It must be emphasized,
however, that just as in the one-layer case, the in-

! Note: except for the slightly different radial variation of %,,
the presence of the zero-layer with nonzero p, enters the governing
equations (3.6) only through the parameter 8 in the last term of
(3.6a), since, according to Eq. (3.8), g,(8 — «) is independent of 3.

2 Of course, there is some cancellation between the contribu-
tions to 8I'}/6¢ on the right-hand side of (3.5a) in the annulus
where mass transfer occurs; this is due to the vertical transfer of
angular momentum represented by the last term.
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duced radial motion is two orders of magnitude
weaker at radii inside the seeding radius, irrespec-
tive of whether the seeding radius is inside or outside
the radius of maximum tangential wind, and the same
applies to the induced tangential wind tendency.

4. Summary and discussion

The calculations described herein have sought to
provide a deeper understanding of the cyclostrophic
and hydrostatic adjustment of simple, broad, shal-
low, vortex flows as a basis for understanding, inter
alia, the more complex response of tropical cyclones
to selective cloud seeding.

The adjustment of a single-layer vortex resulting
from the local removal of mass and angular momen-
tum, as studied in Section 2, is controlled by the
distribution of circulation squared inside and exterior
to the annular region from which mass is withdrawn;
this region is referred to below as the outer vortex.
In the inner region of the annulus, referred to as the
inner vortex, the adjustment can be regarded as a
passive response to changes which occur in the outer
vortex. When the gradient of circulation squared
is zero in the outer vortex, there is no response of
the inner vortex and withdrawn fluid is replenished
by an equal mass flux convergence from large radial
distances, there being no change in fluid depth in
the outer vortex. In contrast, when the gradient of
circulation squared is positive® in the outer vortex,
only a fraction of withdrawn fluid is supplied by
convergence from large radii and the remainder re-
sults from a lowering of the free surface at all radii.
However, in the parameter range of relevance to
tropical cyclones, the response of the inner vortex
is weak compared with that in the outer vortex.

The adjustment of two- and three-layer vortex
models due to a transfer of mass and angular mo-
mentum from the lowest layer to the one above is
also studied. The calculations show that the maxi-
mum tangential velocity is increased whether or not
mass transfer takes place predominantly inside or
outside the radius at which the maximum occurs
and, at the same time, the central surface pressure
decreases. However, the magnitude of these effects
are comparatively small in relation to the strength
of the induced meridional circulation and corre-
sponding changes in tangential wind speed outside
the core at, or beyond, the radii at which mass trans-
fer occurs, as in the one-layer model. Furthermore,
the estimated maximum change in tangential wind
speed that might be produced in a tropical cyclone
by following the seeding procedure suggested by
Simpson and Malkus (1964) is small compared with
observed natural variations.

3 When the circulation squared decreases with increasing ra-
dius, the vortex is centrifugally unstable; accordingly, this situa-
tion is not considered.
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The results of this study strengthen the view
(Rosenthal, 1974, p. 543) that the original hypothesis
proposed by Simpson and Malkus as a basis for
moderating tropical cyclone wind speeds is unlikely
to be effective. However, they do not detract from
the modified strategy described in Section 1, as im-

portant aspects of tropical cyclone dynamics invoked -

in that strategy are excluded in the simple layered
models; for example, questions concerning changes
in the frictional convergence of moisture and its im-
plications with regard to the possible relocation of
the eye wall have not been considered. Attempts
" are currently under way to incorporate these effects
in simple model formulations.
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APPENDIX
Solution of Egs. (2.5) and (3.6)

The differential op'erator on the left-hand side of
Eq. (2.5) is proportional to that on the left-hand
side of Eq. (2.4) which is the same as the operator

(3.7),* viz.,
3L ] - 221,
or|r or r® or

It is easily verified that

L(u) = 3 -c')h] .

ar

ou u 0
— - ——(h%), (Al
ar] rar( ) (AD

whence Eq. (2.5) may be written as
6[ Ou]_u dg q 0§
or g or

where g = h?. For prescribed functions 4(r) and
S(r), this form of Eq. (5) is readily solved using
finite-difference methods. Our procedure uses a

hrL(u) = i[h2r
‘ or

4 This follows When I is eliminated from Eq. (2.4) usfng
Eq. (2.1).
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staggered grid with # and & defined at radii (i ~ 1)A,
(i = 1,N + 1)andq and S defined atradii (i — 12)A,
(i = 1, N), where A is the grid interval for like vari-
ables. The finite difference form of the equation then
reduces to a symmetric tridiagonal formula which
is readily solved by successive elimination. In the
calculation described in Section 2, A = 0.1r,, and
N = 100.

A similar approach is used to solve Egs. (3.6).
In this case, when the operators L;(u;) are replaced
with h;rL,(u;) and the equivalence (A1) is used, the
finite-difference equations reduce to a tridiagonal
matrix equation for the column vector (%), the
coefficients being 2 X 2 matrices. Again, the solu-
tion procedure is straightforward, being structurally
similar to that used to solve Eq. (2.5). In the cal-
culations for Section 3, we also use A = 0.1r,, and

- N = 100.
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