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ABSTRACT

A new perspective of the dynamics of a tropical cyclone eye is given in which eye subsidence and the
adiabatic warming accompanying it are accounted for directly from the equations of motion. Subsidence
is driven by an adverse, axial gradient of perturbation pressure which is associated principally with the
decay and/or radial spread of the tangential wind field with height at those levels of the cyclone where the
tangential winds are approximately in gradient wind balance. However, this pressure gradient is almost
exactly opposed by the buoyancy force field due to adiabatic warming. This corroborates with observa- .

tional data.

The relationship between the present view of eye dynamics and those of Malkus and Kuo and a recent

. study by Willoughby is discussed in detail.

1. Introduction

An essential characteristic of a mature tropical
cyclone is its warm eye. Without this, central surface
pressures as low as are observed and the associated
high wind speeds could not occur; indeed, calcula-
tions show that such low surface pressures cannot
be achieved simply by moist adiabatic ascent of low-
level air in the clouds surrounding the eye (Riehl,
1954, p. 316). It is generally accepted that the relatively
high temperatures observed in the eye, especially in
the middle and upper troposphere, are due to dry
adiabatic warming through subsidence, although the
small vertical velocities involved, of course, cannot
be measured directly. Nevertheless, a completely
satisfactory theory which accounts for this sub-
sidence has not been given (Anthes, 1974, Section
C3). A contribution to this problem forms the subject
of this paper.

Malkus (1958) and Kuo (1959) have suggested that
subsidence in the eye is a result of supergradient
winds? in the neighborhood of the eye wall, inward
of the radius of maximum tangential wind speed.
They argue that these lead to an outward radial
drift of eye air into the eye wall cloud and that, by
continuity, this air is replaced by subsidence within
the eye. The existence of supergradient winds in a
region extending several kilometers inside the radius
of maximum wind has, indeed, been deduced from a
composite analysis of observational data from many

! Paper presented at a Workshop on Tropical Cyclones, held
at the James Cook University, Townsville, Australia, February
1979.

* Supergradient (subgradient) flow is defined when the sum of
the mean centrifugal and Coriolis forces are larger (smaller) than
the radial pressure gradient.
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storms (Gray and Shea 1973; see Figs. 8—11), and
Gray and Shea conclude that their data support the
Malkus-Kuo hypothesis. However, data from in-
dividual storms show that gradient wind balance is
closely satisfied over much of the storm at aircraft
penetration levels® (Hawkins and Rubsam, 1968,
p. 625; R. C. Sheets, personal communication) and it
is possible that the relatively large gradient wind
imbalance deduced by Gray and Shea is an artifice
of their compositing procedure (Willoughby, 1979,
p- 3177). In this paper we show that one can account
for subsidence directly from the governing equations
of motion, even when the horizontal winds are in
close (but not exact) gradient wind balance.

2. Vortex-induced subsidence

A common (but not universal) feature of vortex
flows is the occurrence of axial stagnation in the
meridional motion, with reversed flow along all or
part of the axis and a region surrounding it. This
type of behavior is observed, for example, in dust
devils (Sinclair, 1973) and in both laboratory simula-
tions (Fitzgarrald, 1973) and numerical simulations
(Smith and Leslie, 1975) of these vortices. The rea-
sons are succinctly described by Morton (1966) in
the context of ‘‘long-thin’’ vortices and the ideas in-
volved have proved useful in understanding many
aspects of vortex flows. It is shown below that they
remain valid for ‘‘broad-shallow’’ vortices, includ-
ing tropical cyclones, even though these are in hy-
drostatic balance to a high degree of accuracy.

3 These are mostly confined to pressure levels above about
400 mb.
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We consider an axisymmetric mean vortex for
which the radial and vertical momentum equations
are

D z 14
v v _—_____p_T..Fl, 6))
Dt r p Or
Dw 14
= _e-F,
Dt p 9z

respectively, where u, v and w are the azimuthal-
mean velocity components in a cylindrical coordi-
nate systemr, ¢, z, with its axis vertical and z meas-
uring upward from the surface; ¢ is the time, f the
Coriolis parameter—assumed constant, p, the mean
total pressure, p the air density, g the acceleration
due to gravity;
’2
F=-2am+law -2, o
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are the radial and vertical components of the eddy
stress, respectively, where the overbar denotes an
azimuthal mean and a prime denotes a departure
therefrom; and D/Dt = 3/8t + ud/dr + wd/oz.

It is convenient to remove from these equations
a hydrostatic pressure distribution pe(z), which
. might be the ambient hydrostatic pressure field far
from the storm, say, p.(z), or the horizontal areal
average pressure {p), but in practice, these do not
differ significantly and p.(z) is often a more con-
venient choice. Then with p = pr — pe(z) and
po(z) = —g~'dp,/dz, the equations become

Du  ? 1 g
= p=-=2-F, ®)
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where o = g(p, — p)/p is the buoyancy force per
unit mass. In the fluid dynamics literature?, p is
usually referred to as the dynamic pressure® as it is
this part of the pressure field which, in the absence
of density variations, gives rise to motion. Meteor-
ologists generally prefer the pseudonym perturba-
tion pressure and we shall adhere to this terminology
below. It is important to note that the definitions of
perturbation pressure and buoyancy force are not
unique and the partition of the vertical force field,
—p 18p,/8z — g, between the vertical gradient of
perturbation pressure and the buoyancy force
depends on the choice of reference pressure dis-
tribution py(z). Eq. (6) shows that in a state of no
vertical mation, balance exists between the pertur-

4 See, e.g., Lighthill (1963, p. 10). .

3 Batchelor (1970, p. 176) chooses the pseudonym modified

pressure.
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bation pressure gradient and the buoyancy force,
whereas accelerated vertical motion is driven by an
imbalance between the vertical gradient of perturba-
tion pressure, the buoyancy force and the vertical
stress.

In concentrated vortex flows the radial accelera-
tion in Eq. () is dominated over much of the flow by
the centripetal contribution —v?%/r, and this results in
a tight coupling between the azimuthal and axial
components of motion through the pressure field.
In such problems, it can be misleading to separate
cause and effect artificially, but it is enlightening to
diagnose the dynamical constraints of the equations
of motion as follows.

We consider motion along the vortex axis (r = 0J,
where we can estimate the perturbation pressure by
integrating p x Eq. (5) with respect to radius, from
the axis to some large radius R at which the per-
turbation pressure can be assumed negligible. Dif-
ferentiation with respect to height and division by
the density then gives

1 4 1 0 (% 2
——i) =———J p(2—+fv)dr
p 0z /0 p Oz
R
SERN
Dt

In particular, if the swirling motion is in gradient
wind balance,

1 9 1 0 [ 2
— _.._p_) = _—-J p(z— +fv)dr.
p 0z /- p 0z j,

p 09z Jo

®

The inner core of a tropical cyclone is essentially
a high Rossby number flow in which the centrifugal
acceleration is much larger than the Coriolis acceler-
ation; hence, the right-hand side of Eq. (8) is domi-
nated by the first term, and it follows that adverse
axial (perturbation) pressure gradients (—p~'dp/dz
< 0) occur at levels where the tangential velocity
field decays and/or spreads with height, i.e.,

a R
—J (pv¥Irydr < 0.
0z Jo

In a tropical cyclone, the decay of tangential velocity
with height is especially prominent in the upper
troposphere (see, e.g., Shea and Gray, 1973, Fig. 10)
and we might surmise from Eq. (8) that p™'0p/0z
will be large at these levels, say, above 500 mb.
Haurwitz (1935) has shown that the vertical force
balance in a tropical cyclone is very close to hydro-
static so that this large perturbation pressure gradient
must be very nearly balanced by the buoyancy force
in Eq. (6), requiring large temperature differences
above 500 mb. Such large temperature differences
are, indeed, observed at these levels. Of course,
hydrostatic balance is not exact, except possibly at
isolated points, but since the time scale for tropical
cyclone intensification (at least half a day) is very
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long compared with the periods of non-hydrostatic
inertia-gravity waves (typically of order 2#/N,
where N is the Brunt-Vaisild frequency),® vertical
accelerations are orders of magnitude less than
either the perturbation pressure gradient or the
buoyancy force. It is therefore inaccurate to cal-
culate the vertical velocity by integrating the verti-
cal momentum equation. Accordingly, most numeri-
cal models of tropical cyclones realistically assume
that hydrostatic balance is exactly satisfied, in which
case the vertical velocity may be obtained by in-
tegrating the continuity equation (see, e.g., Rosen-
thal, 1970, p. 109). However, the vertical velocity
also must be consistent with the thermodynamic
equation which, for a Boussinesq fluid, can be ex-
pressed in the form

Do .

Dr + N*w = (@,
where Q represents diabatic sources (or sinks) of
mean buoyancy together with the contribution due
to eddy heat flux convergence.

As an example, if a tropical cyclone intensifies
through successive states of approximate gradient
wind balance, the buoyancy force on the axis is
equal to the perturbation pressure gradient cal-
culated from Eq. (8), and hence the vertical velocity
from Eq. (9) is given by :

&)

w =

1 oo
o=, w
where N,2 = N2 + 80/9z is the Brunt-Viisala fre-
quency in the eye.

Thus, we may regard subsidence as associated
with the developing axial pressure gradient and,
provided the rate of development is small compared
with the Brunt-Viisald frequency, as it is in the eye
of a tropical cyclone, the rate of subsidence is just
that required to warm the air to the degree that its
buoyancy remains in close hydrostatic balance with
the pressure gradient.

Clearly, in the absence of effects representing a
sink of heat (i.e., Q@ = 0), the presence of vertical
motion in the mature (steady) state is not com-
patible with a steady, pressure gradient-buoyancy
force balance.? This supports the deduction by Gray
[reported in Gray and Shea (1973, p. 1569)] based

¢ Assuming the eye to be in approximate solid body rotation
and the Brunt-Vaisila frequency to be uniform, inertia-gravity
waves have frequencies lying in the range {, — N, where
{, is the absolute vorticity in the eye, typically 1072 s7!, and
N is typically 107 s='. Therefore, the period of these waves
ranges between about 10 min and 2 h. However, only the
shorter period waves, with frequencies of order N, are appre-
ciably non-hydrostatic.

7 This is in marked contrast to a ‘‘two-cell”” vortex in a
homogeneous fluid where the adverse axial pressure gradient is
unopposed by buoyancy and drives a circulation in the inner
cell even in the steady state.
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on an observation during a flight into the center of
a quasi-stationary storm (Hurricane Gladys, 20
September 1964, central pressure 960 mb) where
the warm center air was apparently stagnant. Gray
notes that ‘‘without storm motion there was no need
to cycle air through the storm’s center and that in
comparison to eye ventilation, the radiation and
purely turbulent diffusion heat losses were small.”’

The observations reported by Gray and Shea
(1973) indicate that in general, ‘‘the eye is con-
tinually ventilated and reforming itself by new sink-
ing and warming as it moves.’” This is again con-
sistent with Eq. (10) which shows that even in the
steady state, subsidence will occur when there is a
sink of buoyancy in the eye. In this situation, the
rate of subsidence is that required to produce just
enough adiabatic warming to compensate for the
cooling and hence maintain the buoyancy field in
hydrostatic balance with the perturbation pressure
gradient associated with the vortex.

3. Some deductions using observational data

It is instructive, using observational data, to
estimate the axial perturbation pressure gradient on
the basis of the centrifugal term alone in Eq. (7).
We do this below using the distribution of mean
tangential wind speed with height given by Shea and
Gray (1973, Fig. 10) and the Tampa eye sounding
reported by Riehl (1948). The latter is used to esti-
mate the density at various levels in the eye as well
as thicknesses between various pressure levels.

For analytic convenience we assume a Rankine-
combined vortex with mean tangential velocity pro-
file
if 0sr<r,

if r=r,,

U2/ 1,
v(r,z) =

V() ralr,
where the maximum speed at height z, v,,(z), is ob-
tained from the data. If radial density variations are
ignored, we find

‘R 2 2
J Ej—dr = pvmz[l + l(f—"i) ]
o T 2\R
= pv,2, if r, <R.
For our purpose, the approximation will suffice since
with r,, typically 30 km, it gives 98% accuracy for R
as small as 150 km. We then estimate the contribu-
tion to —p~(dp/0z),-, using the formula p~*A( pv,,.2)/
Az, where p~! is the average density between two
pressure levels, Az the thickness between these
levels and A(pv,2) the difference between values of
the integral at these levels. The results are listed in
Table 1, together with averages for the buoyancy
force for the same pressure intervals &, computed
from the Tampa eye sounding. As anticipated, the
centrifugal term in Eq. (7) gives the largest con-
tributions to the vortex-induced pressure gradient
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TaBLE 1. Estimated contribution to the axial dynamic pressure
gradient from the centrifugal term in Eq. (5) in various pressure
intervals and mean buoyancy force in these intervals obtained
from the Tampa eye; see text for details.
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TABLE 2. Subsidence rates (~w) for various
eye cooling rates Q.

g (K h™ ~w (m s
. 1 A 0.1 0.007
Pressure interval — — (pv,?) (m 572)
Az ~ -2 0.25 0.02
(mb) o & ms™ 1.0 0.07
900-700 0.37 0.10 4.0 0.28
700-500 0.30 0.26
500-400 0.4 0.36 .
400-300 0.40 0.39 Estimates for the rate of subsidence, using the
300-200 0.09 0.46 formula w =

below 500 mb, and for the Tampa sounding at least,
it accounts broadly for the dynamic pressure gradi-
ent required to balance the buoyancy force between
700 and 300 mb. At lower levels, the centrifugal term
is much larger than the buoyancy force and for hydro-
static balance to obtain, it must be opposed by the
last two terms in Eq. (7). Estimates for these require
a much more detailed analysis of the data, but quali-
tative arguments show that they must act together
to oppose the centrifugal term. Thus, at low levels,
the radial flow is inward (u < 0), but experiences
strong deceleration (Du/Dt > 0) as it approaches the
radius of maximum wind; it is also subject to an out-
ward frictional force (F, > 0). Above the inflow
layer the radial velocity, and hence Du/Dt and F,
are small, so that the integrals in the last two terms
of Eq. (7) decrease with height to give a positive
contribution to the axial dynamic pressure gradient
force. In the outflow region above 300 mb, Du/Dt is
positive, and since it is generally small in middle
levels, we anticipate that

GUR p(Du/Dt)dr]/Bz > 0,

0

so that the penultimate term in Eq. (7) has the same
sign as the centrifugal term and gives a negative
contribution to the axial dynamic pressure gradient.
It is also possible that the Coriolis term is compa-
rable with the centrifugal term, since the tangential
velocities are much weaker in the outflow region
than at low and middle levels.

¥ 2

Dt r r

Ly (-— +— +fv) - (ﬂ;f +fvg,) - (l—(?—(ru’?) + 2-(u’w’)) ,
r r or az )

—Q/N 2 [obtained from Eq. (10) with
d8/9t = 0], are given in Table 2 for a range of Q
values and for N2 typical of the Tampa eye sound-
ing between 300 and 400 mb, i.e., 27 N,™! = 9.5 min.
1t is not easy to determine an appropriate value for
Q for a given storm at a given time using hitherto
published data, but values of cooling rates of ~1 K h™?
lead to subsidence rates of order. 0.1 m s™!, consis-
tent with estimates by Malkus (1958, p. 341). Sucha
value of Q is about one-quarter the rate of heating
in the eye wall clouds due to latent heat release
(Anthes, 1974, Table 3). If Q is assumed to incorpo-
rate the bulk effects of eye ventilation caused by
storm motion, as well as turbulent mixing across the
eye wall, evaporation of hydrometeors and radiation
effects, cooling rates of this order of magnitude
would appear to be not unreasonable.

4. Discussion of the Malkus-Kuo theory and
conclusions

Malkus (1958) and Kuo (1959) suggest that eye
subsidence is a manifestation of radial acceleration
due to the existence of supergradient winds in the
neighborhood of the eye wall; these, they hypoth-
esize, are caused by the inward turbulent flux of
cyclonic angular momentum inside the radius of
maximum winds, but Gray (1967) argues that verti-
cal transport of angular momentum by the eye wall
clouds may also play an important role. The idea is
that the additional azimuthal-mean centrifugal force
v'?r, due to the tangential velocity fluctuation v’,
makes an important contribution to the azimuthal-
mean momentum equation and precludes gradient
wind balance. The arguments are best exposed by
considering the following form of Eq. (5)%;

(11

J \

—
Y — 4

A B

where v, denotes the gradient wind defined by
p13p/dr = vg2r ! + fv,. While there is some un-
certainty of interpretation, the Malkus-Kuo theory
appears tacitly to ignore the stress term C in Eq.
(11) and to assume that term A exceeds term B by
the amount v'%/r, so that the centrifugal force fluc-
tuation drives an outward radial acceleration across

e

the eye wall. By continuity, this would lead to sub-
sidence in the eye. This picture may be broadly
correct, but the underlying assumptions are non
sequitur; there is no basis whatever for assuming

8 Recall that we have omitted bars on mean velocities—
see Section 2.
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that v'%r leads to an imbalance of radial forces—
one might equally suppose that the radial accelera-
tion is very small and that v is accurately determined
by Eq. (11) with the left-hand side equal to zero!
Of course, any radial acceleration which does exist
must be consistent with Eq. (11).

Even if the radial acceleration is positive, it does
not necessarily follow that eye air is being accelerated
outward; it is quite possible that inward flowing air is
being decelerated inward. Thus the statement by
Gray and Shea (1973, p. 1571) that ‘‘inside the radius
of maximum wind, especially in the lowest layer, the
winds are supergradient, supporting Malkus’ (1958)
hypothesis’’ is not correct; their observation neither
supports nor detracts from this hypothesis. Never-
theless, a region of supergradient winds is expected
just outside the eye, where the low-level inflow is
decelerated as it ascends the ring of clouds sur-
rounding the eye.

In earlier sections we show that eye subsidence
is driven by an adverse, axial, perturbation pressure
gradient which at middle levels of the cyclone is
associated principally with the decay with height,
and/or the radial spread, of the tangential wind field.
The subsidence leads to adiabatic warming at a rate
which is just sufficient to generate and maintain
the buoyancy force in close hydrostatic balance
with it. By continuity, the subsiding air must even-
tually flow outward and be accepted by the eye wall
clouds, and the radial acceleration it experiences
must be positive, implying supergradient winds, and
must satisfy Eq. (17). This picture is consistent with
observational data. ‘

Because of the tight dynamic coupling between
the meridional and tangential components of motion
through the pressure field, it is equally acceptable
to regard eye subsidence as the result of a positive
radial acceleration due to an imbalance of forces
on the right-hand side of Eq. (11). Subsidence fol-
lows from continuity and the vertical velocities in-
volved must be such that they generate buoyancy
forces in hydrostatic balance with the perturbation
pressure gradients which, in turn, depend inter alia
on the spatial distribution of tangential velocity. This
alternative view contains. the Malkus-Kuo theory
but the latter fails to take account of the overall
constraints. Moreover, it is not possible to infer, as
do Malkus and Kuo, that ‘‘suction’’ by the eye wall
clouds is caused by the turbulent mixing of angular
momentum, or by the vertical transport of angular
momentum as postulated by Gray, even though the
centrifugal force fluctuation in Eq. (11) may be
important. Such processes may simply result in a
different balanced vortex state to that which would
obtain in their absence. Note, however, that these
remarks do not call into question the reasons
advanced by Kuo (1959) for the existence of a calm
eye in tropical cyclones.
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5. Relationship with Willoughby’s theory

In a recent study of the meridional circulation in
hurricanes, Willoughby (1979) finds that **. . . sub-
sidence in the eye is forced by radial gradients of
convective heating,”’ a result not obviously in ac-
cord with the interpretation given in this paper.
However, as is shown below, the two studies are
complementary and not in conflict. Willoughby’s
analysis is more complete in the sense that it pro-
vides a recipe for solving the equations for a balanced
vortex to obtain the instantaneous meridional cir-
culation pattern for arbitrarily prescribed distribu-
tions of mean buoyancy and tangential velocity in
hydrostatic and gradient (and hence thermal) wind
balance with each other. Accordingly, his conclu-
sion regarding subsidence is a global one which re-
flects the way in which the vortex is forced. In
contrast, our interpretation gives consideration to
local force balances in the eye, taking into account -
the same overall constraints included in Willoughby’s
theory. To show this, it is instructive to consider
briefly Willoughby’s approach. Essentially he con-
siders an evolving axisymmetric mean vortex in
thermal wind balance and described by the equations
(in our notation),

2 1e)
Y= 1 (12)
r po Or '
8 o 0
—U—+u—2-+w—li+ﬂ+fu= , (13)
ot or 0z r
1 9
0=-—2 4o, (14)
pPo 0z
oo
— +u—+wN2=0Q, (15)
ot r
i} i
— (poru) + — (porw) = 0, (16)
or 0z

where N? = N2 + do/dz. Using a technique intro-
duced by Eliassen, he forms the time derivative of
the azimuthal vorticity (i.e., the thermal wind)

equation, i.e.,
1 20 aduv d/dc

P az{p"(r +f) ar ] Br( or ) 1
from which time derivatives can be eliminated using
Eqgs. (2) and (4). Then, the introduction of a stream-
function s, for the meridional components of the
flow such thatu = —(rpy)~'0y/dz, w = (rpy)~'0Y/dr
leads to a diagnostic equation for ¢ which can be
solved for a specified heating source @ and for
given spatial distributions of v and o. It is neces-
sary that v and o are in thermal wind balance and
that they satisfy conditions which ensure that the
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flow is everywhere centrifugally and statically stable,
and hence that the equation for ¢ is elliptic.
In this paper we have studied the local force fields

associated with eye motions and the constraints on.

these fields, based essentially on Eqs. (12), (14) and
(15), or generalizations thereof. Hence our inter-
pretations are valid also in Willoughby’s theory.
On the other hand, Willoughby observes that the
source term in his equation for ¢ is 8Q/dr and
concludes that ‘‘in the absence of Fickian diffusion
of momentum and heat, both deep inflow in the
outer vortex and subsidence within the eye are
forced by radial gradxents of convective heating.”’
This represents a global view of meridional motion
and one which certainly takes account of all the
constraints. Nevertheless, it may be worth pointing
out that Willoughby’s theory applies strictly to
evolving vortices, otherwise both sides of Eq. (17)
are identically zero, and the diagnosed circulations
would appear to depend on the rate of evolution;
i.e., on the degree to which the initial fields
" chosen for v and o are close to a steady state for
the prescribed distribution of Q. Indeed, if a steady
state exists, Eqs (2) and (4) can be solved directly
for u and w, i.e.,

oM
0 0z
u = b
99 M _ M
or 0z or
oM
e
w o= — (18)
ic_r_?ﬂ _ e M oM’
or 0z ar

where M = rv + Y%2r*fand v (or M) and o are related
through the thermal wind equation. Hence, accord-
ing to Eq. (18), there can be no subsidence (w = 0)
in the steady state when @ = 0, consistent with the
results of Section 2.
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